1
|
Kuramoto H, Nakanishi T, Yumoto H, Takegawa D, Mieda K, Hosaka K. Caffeic Acid Phenethyl Ester Enhances Bone Repair-related Factors in MC3T3-E1 Cells. Cell Biochem Biophys 2024:10.1007/s12013-024-01644-8. [PMID: 39708213 DOI: 10.1007/s12013-024-01644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/23/2024]
Abstract
Apical periodontitis is an inflammatory disease caused by bacterial infection in the root canal that spreads to the apical periodontal tissues, resulting in bone resorption around the root apex as the disease progresses. Vascular endothelial growth factor (VEGF), a growth factor involved in angiogenesis, plays an important role in bone remodeling. We reported that caffeic acid phenethyl ester (CAPE), a bioactive substance of propolis, induces VEGF in odontoblast-like cells and dental pulp cells. However, the effects of CAPE on bone tissues remain unclear. This study was aimed to investigate the effects of CAPE on MC3T3-E1 cells, mice preosteoblast line. As a result, CAPE up-regulated the production of VEGF and induced the phosphorylation of extracellular signal-regulated kinases (ERK), p38 mitogen-activated protein kinase (MAPK), and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) in MC3T3-E1 cells. Furthermore, CAPE increased the expression of factors involved in osteoblast differentiation, runt-related transcription factor 2 (Runx2), Osterix, and Wnt5a/b in MC3T3-E1 cells. In this study, we show that CAPE could induce bone repair-related factors in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hitomi Kuramoto
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
- Department of Pediatric Dentistry, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Tadashi Nakanishi
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan.
| | - Hiromichi Yumoto
- Department of Periodontology and Endodontology, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Daisuke Takegawa
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Katsuhiro Mieda
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
| | - Keiichi Hosaka
- Department of Regenerative Dental Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-cho, Tokushima, 770-8504, Japan
- Division of Interdisciplinary Research for Medicine and Photonics, Institute of Post LED Photonics, Tokushima University, Tokushima, Japan
| |
Collapse
|
2
|
Wang Y, Qi W, Yu S, Zhou X, Wang X, Liu F, Jin R, Luo X, Ma Q, Lu L, Yang J. Comprehensive analysis of skin growth-related hub genes and microenvironment characterization in a mouse expanded skin model. Front Immunol 2024; 15:1306353. [PMID: 39703504 PMCID: PMC11655345 DOI: 10.3389/fimmu.2024.1306353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Background Mechanical stretch-mediated tissue expansion is effective for obtaining extra skin and soft tissue required for the repair of defects or reconstruction of surface organs. Understanding the cellular and molecular mechanisms and identifying hub genes and key cell types associated with skin expansion could help predict the success of skin growth during expansion procedures. Methods We analyzed murine chip sequencing data and single-cell sequencing data available from the Gene Expression Omnibus database. Based on the differentially expressed and epithelial-mesenchymal transition-related genes, random forest and protein-protein interaction network analysis identified hub genes for predicting skin regeneration in tissue expansion. The fate of the cell subpopulations, expression of hub genes in different cell types, and their communication were also assessed. Results Five genes, integrin beta 5 (Itgb5), tropomyosin 1 (Tpm1), secreted frizzled-related protein-1 (Sfrp1), Notch1, and insulin-like growth factor binding protein 2 (Igfbp2), were identified as having the greatest impact on prediction accuracy. These hub genes were primarily enriched in the Notch and phosphoinositide 3-kinase-AKT pathways. Immune cell infiltration analysis further revealed that mast cell infiltration was significantly higher in the expanded skin group than that in the control group. According to single-cell data, the interactions between epithelial cells, stem cells, and other cell types were higher in the expanded skin group than those in the control group. Moreover, Tpm1, Sfrp1, and Notch1 were highly expressed in all epithelial and stem cell subgroups. Conclusions The hub genes, Notch1, Tpm1 and Sfrp1, and their associated signaling pathways such as Notch and Wnt signaling and functions in key cell subsets highlight prospective therapeutic strategies to enhance skin growth under mechanical expansion. Moreover, mast cell activation and infiltration may trigger immune responses in the expanded skin, which requires further investigation.
Collapse
Affiliation(s)
- Yinmin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wenxiao Qi
- Department of Sports Medicine, Shanghai Sixth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shun Yu
- Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xianyu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiuxia Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- The First People’s Hospital of the Lancang Lahu Autonomous County, Puer, Yunnan, China
| | - Rui Jin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qiangliang Ma
- Department of Dermatology, Traditional Chinese Medicine Hospital, Ili Kazakh Autonomous State, Yining, China
| | - Lin Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhou L, Mu S, Zhang Y, Song H. USP10-mediated deubiquitination of NR3C1 regulates bone homeostasis by controlling CST3 expression. Biochem Pharmacol 2024; 229:116519. [PMID: 39236936 DOI: 10.1016/j.bcp.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Dysregulated bone homeostasis contributes to multiple diseases including osteoporosis (OP). In this study, osteoporotic mice were successfully generated using ovariectomy to investigate the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in OP. NR3C1, identified as a significantly upregulated gene in OP using bioinformatic tools, was artificially downregulated in osteoporotic mice. NR3C1 expression was significantly elevated in the femoral tissues of osteoporotic patients, and downregulation of NR3C1 alleviated bone loss and restored bone homeostasis in osteoporotic mice, as manifested by increased ALP- and OCN-positive cells and reduced RANKL/OPG ratio. Downregulation of NR3C1 inhibited osteoclastic differentiation of RAW264.7 cells and mouse bone marrow-derived macrophages (BMDM) and promoted osteogenic differentiation of MC3T3-E1 cells. The transcription factor NR3C1 bound to the cystatin-3 (CST3) promoter to repress its transcription in both RAW264.7 and MC3T3-E1 cells. The downregulation of CST3 reversed the protective effect of NR3C1 downregulation against OP. Ubiquitin-specific-processing protease 10 (USP10)-mediated deubiquitination of NR3C1 improved NR3C1 stability. Downregulation of USP10 inhibited osteoclastic differentiation of RAW264.7 cells and BMDM while promoting osteogenic differentiation of MC3T3-E1 cells. Taken together, USP10-mediated deubiquitination of NR3C1 regulates bone homeostasis by controlling CST3 transcription, providing an attractive therapeutic strategy to alleviate OP.
Collapse
Affiliation(s)
- Long Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Shuai Mu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China
| | - Hanyi Song
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, PR China.
| |
Collapse
|
4
|
Zhou R, Yin L, Zhang X, Zhu K. SFRP1 reduces neutrophil infiltration and inhibits the Wnt/β-catenin pathway to alleviate oral submucous fibrosis. In Vitro Cell Dev Biol Anim 2024; 60:1034-1045. [PMID: 39017751 DOI: 10.1007/s11626-024-00945-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Oral submucous fibrosis (OSF) is a precancerous condition characterized by oral mucosal atrophy with fibrosis of the submucosal tissue. OSF has a high prevalence, and treatment requires improvement. Our study aims to investigate the role and mechanism of secreted frizzled-related protein 1 (SFRP1) in OSF. We constructed an arecoline-induced OSF mice model. Through Pearson's correlation analysis, we investigated the association between SFRP1 levels and expressions of proteins related to the Wnt/β-catenin signaling pathway, as well as the correlation between SFRP1 levels and the degree of neutrophil infiltration. Moreover, neutrophil infiltration intensity, tissue fibrosis degree, and levels of β-catenin, Cyclin D1, and c-myc were evaluated after SFRP1 overexpression treatment through immunohistochemical and biochemical assays. A Wnt/β-catenin pathway activator was used to investigate the molecular mechanism of SFRP1 in the arecoline-induced OSF cell model. Compared with the control group, mice in the OSF group exhibited increased collagen deposition and more severe fibrosis in the oral mucosal tissue (OMT). In the OMT of OSF mice, the levels of SFRP1 were decreased. The levels of SFRP1 exhibited a negative correlation with the levels of Wnt/β-catenin proteins and neutrophil infiltration in the OMT. Upon SFRP1 overexpression, there was a reduction in neutrophil infiltration and fibrosis in the OMT, as well as inhibition of Wnt/β-catenin-related proteins. In vitro, the Wnt/β-catenin pathway activator further reversed the effect of SFRP1 overexpression on OSF. SFRP1 attenuates OSF by reducing neutrophil infiltration and inhibiting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rong Zhou
- Department of Stomatology, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Lin Yin
- Department of Stomatology, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Xin Zhang
- Department of Stomatology, Changsha Hospital for Maternal and Child Health Care, Changsha, China
| | - Keke Zhu
- Department of Stomatology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
5
|
Pan K, Lu Y, Cao D, Peng J, Zhang Y, Li X. Long Non-coding RNA SNHG1 Suppresses the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells by Binding with HMGB1. Biochem Genet 2024; 62:2869-2883. [PMID: 38038773 DOI: 10.1007/s10528-023-10564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
Osteoporosis (OP) has a significant detrimental impact on the health of the elder. Long-term clinical effectiveness of current drugs used for OP treatment is limited. Therefore, it is very important to explore novel treatment targets for OP. The expression of SNHG1, HMGB1, OCN and OPN in gene level was measured using RT-qPCR, and the protein expression was determined by Western blotting assay. The concentration of IL-1β and IL-18 in supernatant of the bone marrow mesenchymal stem cells (BMSCs) was measured by ELISA. The interaction between SNHG1 and HMGB1 was confirmed by RNA pull down. Besides, alizarin red staining was performed to evaluate the differentiation of BMSCs into osteoblast. SNHG1 and HMGB1 were found to be upregulated in the serum of OP patients. During the osteogenic differentiation of BMSCs, the expression of osteoblastogenesis markers (OCN and OPN) and the activity of ALP were upregulated, while the expression levels of SNHG1 and HMGB1 were decreased in a time-dependent manner. In addition, the interaction between SNHG1 and HMGB1, expression of pyroptosis-associated factors (caspase-1 p20 and GSDMD-N), and secretion of IL-1β and IL-18 were also decreased during osteogenic differentiation. Interestingly, increasing SNHG1 promoted HMGB1 expression, activated pyroptosis, but inhibited osteogenic differentiation. Silencing HMGB1 or inhibiting caspase-1 partially rescued the inhibitory effect of SNHG1 on osteogenic differentiation. Our findings indicate that SNHG1 suppresses the osteogenic differentiation of BMSCs by activating pyroptosis through interaction with HMGB1 and promotion of HMGB1 expression. Our work provides further evidence supporting SNHG1 acts as a potential target for OP treatment, and reveals for the first time that SNHG1 regulates osteogenic differentiation by affecting pyroptosis.
Collapse
Affiliation(s)
- Kaihua Pan
- Department of Orthopaedics, The First Hospital of Changsha, No. 311, Yingpan Road, Kaifu District, Changsha, 410005, Hunan, People's Republic of China
| | - Yuanyuan Lu
- Department of Orthopaedics, The First Hospital of Changsha, No. 311, Yingpan Road, Kaifu District, Changsha, 410005, Hunan, People's Republic of China
| | - Daning Cao
- Department of Orthopaedics, The First Hospital of Changsha, No. 311, Yingpan Road, Kaifu District, Changsha, 410005, Hunan, People's Republic of China
| | - Jiang Peng
- Department of Orthopaedics, The First Hospital of Changsha, No. 311, Yingpan Road, Kaifu District, Changsha, 410005, Hunan, People's Republic of China
| | - Yunqing Zhang
- Department of Orthopaedics, The First Hospital of Changsha, No. 311, Yingpan Road, Kaifu District, Changsha, 410005, Hunan, People's Republic of China
| | - Xiaoming Li
- Department of Orthopaedics, The First Hospital of Changsha, No. 311, Yingpan Road, Kaifu District, Changsha, 410005, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Liu L, Wu J, Lu C, Ma Y, Wang J, Xu J, Yang X, Zhang X, Wang H, Xu J, Zhang J. WTAP-mediated m 6A modification of lncRNA Snhg1 improves myocardial ischemia-reperfusion injury via miR-361-5p/OPA1-dependent mitochondrial fusion. J Transl Med 2024; 22:499. [PMID: 38796415 PMCID: PMC11128115 DOI: 10.1186/s12967-024-05330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion injury (MIRI) is caused by reperfusion after ischemic heart disease. LncRNA Snhg1 regulates the progression of various diseases. N6-methyladenosine (m6A) is the frequent RNA modification and plays a critical role in MIRI. However, it is unclear whether lncRNA Snhg1 regulates MIRI progression and whether the lncRNA Snhg1 was modified by m6A methylation. METHODS Mouse cardiomyocytes HL-1 cells were utilized to construct the hypoxia/reoxygenation (H/R) injury model. HL-1 cell viability was evaluated utilizing CCK-8 method. Cell apoptosis, mitochondrial reactive oxygen species (ROS), and mitochondrial membrane potential (MMP) were quantitated utilizing flow cytometry. RNA immunoprecipitation and dual-luciferase reporter assays were applied to measure the m6A methylation and the interactions between lncRNA Snhg1 and targeted miRNA or target miRNAs and its target gene. The I/R mouse model was constructed with adenovirus expressing lncRNA Snhg1. HE and TUNEL staining were used to evaluate myocardial tissue damage and apoptosis. RESULTS LncRNA Snhg1 was down-regulated after H/R injury, and overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization. Besides, lncRNA Snhg1 could target miR-361-5p, and miR-361-5p targeted OPA1. Overexpressed lncRNA Snhg1 suppressed H/R-stimulated cell apoptosis, mitochondrial ROS level and polarization though the miR-361-5p/OPA1 axis. Furthermore, WTAP induced lncRNA Snhg1 m6A modification in H/R-stimulated HL-1 cells. Moreover, enforced lncRNA Snhg1 repressed I/R-stimulated myocardial tissue damage and apoptosis and regulated the miR-361-5p and OPA1 levels. CONCLUSION WTAP-mediated m6A modification of lncRNA Snhg1 regulated MIRI progression through modulating myocardial apoptosis, mitochondrial ROS production, and mitochondrial polarization via miR-361-5p/OPA1 axis, providing the evidence for lncRNA as the prospective target for alleviating MIRI progression.
Collapse
Affiliation(s)
- Linlin Liu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiahong Wu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Cheng Lu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Yan Ma
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiayi Wang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jie Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Xiaoli Yang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Xuan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Hua Wang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jieyu Xu
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China
| | - Jiehan Zhang
- Department of Cardiology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, No. 358, Datong Road, Pudong New Area, Shanghai, 200137, China.
| |
Collapse
|
7
|
Weng Z, Xu C, Chen X, Yan Q, Fu Z, Jiao J, Xu J, Liu Q, Wang D, Liang J, Li W, Gu A. Sp1-activated FGFR2 is involved in early-life exposure to nickel-induced craniosynostosis by regulating the ERK1/2 signaling pathway. ENVIRONMENT INTERNATIONAL 2024; 184:108477. [PMID: 38340406 DOI: 10.1016/j.envint.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/13/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Nickel, a common environmental hazard, is a risk factor for craniosynostosis. However, the underlying biological mechanism remains unclear. Here, we found that early-life nickel exposure induced craniosynostosis in mice. In vitro, nickel promoted the osteogenic differentiation of human mesenchymal stem cells (hMSCs), and its osteogenic ability in vivo was confirmed by an ectopic osteogenesis model. Further mRNA sequencing showed that ERK1/2 signaling and FGFR2 were aberrantly activated. FGFR2 was identified as a key regulator of ERK1/2 signaling. By promoter methylation prediction and methylation-specific PCR (MSP) assays, we found that nickel induced hypomethylation in the promoter of FGFR2, which increased its binding affinity to the transcription factor Sp1. During pregnancy and postnatal stages, AZD4547 rescued nickel-induced craniosynostosis by inhibiting FGFR2 and ERK1/2. Compared with normal individuals, nickel levels were increased in the serum of individuals with craniosynostosis. Further logistic and RCS analyses showed that nickel was an independent risk factor for craniosynostosis with a nonlinear correlation. Mediated analysis showed that FGFR2 mediated 30.13% of the association between nickel and craniosynostosis risk. Collectively, we demonstrate that early-life nickel exposure triggers the hypomethylation of FGFR2 and its binding to Sp1, thereby promoting the osteogenic differentiation of hMSCs by ERK1/2 signaling, leading to craniosynostosis.
Collapse
Affiliation(s)
- Zhenkun Weng
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Cheng Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiu Chen
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zuqiang Fu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; School of Public Health, Southeast University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jian Jiao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jin Xu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China; Department of Maternal, Child, and Adolescent Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Qian Liu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongmei Wang
- The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Jingjia Liang
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenxiang Li
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
8
|
Tan Q, Zhang K, Wang Q, Zang R. Oxycodone alleviates LPS-induced neuroinflammation by regulating the CREB/miR-181c/PDCD4 axis. J Toxicol Sci 2024; 49:435-446. [PMID: 39358233 DOI: 10.2131/jts.49.435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
BACKGROUND Neuroinflammation plays a critical role in various neurological disorders. Oxycodone has anti-inflammatory properties. The purpose of this work was to look into the effect of oxycodone in controlling lipopolysaccharide (LPS)-induced neuroinflammation in microglia. METHODS LPS-induced HMC3 cells were subjected to oxycodone (2.5, 5, 10 and 20 μg/mL). The mRNA and protein expressions were examined by qRT-PCR and western blotting. TNF-α, IL-1β, IL-6, and IL-8 levels were assessed by ELISA. MTT assay was adopted to measure cell viability. The interactions between CREB, miR-181c and PDCD4 were analyzed by dual-luciferase reporter assay, ChIP and/or RIP assays. RESULTS Oxycodone treatment alleviated LPS-induced inflammation in HMC3 cells and increased p-CREB level, but reduced PDCD4 and iNOS levels in LPS-treated cells. Mechanistically, oxycodone mitigated LPS-induced neuroinflammation by upregulating miR-181c. In addition, CREB promoted miR-181c expression by directly binding to the MIR181C promoter, and miR-181c inhibited PDCD4 expression by directly binding to PDCD4 3'UTR. As expected, oxycodone alleviated LPS-induced neuroinflammation by regulating the CREB/miR-181c/PDCD4 axis. CONCLUSION Oxycodone attenuated LPS-induced neuroinflammation in microglia by regulating the CREB/miR-181c/PDCD4 axis. These findings proved that oxycodone is a potential drug for treating neuroinflammation and elucidate the mechanisms involved.
Collapse
Affiliation(s)
- QingYun Tan
- The First Affiliated Hospital of Jiamusi University, Department of Anesthesiology, China
| | - Kai Zhang
- PLA General Hospital Eighth Medical Center, Tuberculosis Department one ward, China
| | - QingDong Wang
- The First Affiliated Hospital of Jiamusi University, Department of Anesthesiology, China
| | - Rongjia Zang
- The First Affiliated Hospital of Jiamusi University, Department of Anesthesiology, China
| |
Collapse
|
9
|
Lu Y, Pan K, Zhang Y, Peng J, Cao D, Li X. The mechanism of lncRNA SNHG1 in osteogenic differentiation via miR-497-5p/ HIF1AN axis. Connect Tissue Res 2024; 65:63-72. [PMID: 37966352 DOI: 10.1080/03008207.2023.2281321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
The pivotal role of lncRNAs in osteoporosis progression and development necessitates a comprehensive exploration of the functional and precise molecular mechanisms underlying lncRNA SNHG1's regulation of osteoblast differentiation and calcification. The study involved inducing BMSCs cells to differentiate into osteoblasts, followed by transfections of miR-497-5p inhibitors, pcDNA3.1-SNHG1, sh-HIF1AN, miR-497-5p mimics, and respective negative controls into BMSCs. Quantitative PCR (qPCR) was employed to assess the expression of SNHG1 and miR-497-5p. Western Blotting was conducted to measure the levels of short stature-related transcription factor 2 (RUNX2), osteopontin (OPN), osteocalcin (OCN), and HIF1AN. Alkaline phosphatase (ALP) activity was determined using appropriate assay kits. Calcium nodule staining was performed through Alizarin red staining. Dual luciferase reporter gene assays were executed to validate the interaction between SNHG1 and miR-497-5p, as well as HIF1AN. Throughout osteogenic differentiation, there was a down-regulation of SNHG1 and HIF1AN, in contrast to an elevation in miR-497-5p levels. Direct interactions between miR-497-5p and both SNHG1 and HIF1AN were observed. Notably, SNHG1 exhibited the ability to modulate HIF1AN by influencing miR-497-5p, thereby inhibiting osteogenic differentiation. Functioning as a competitive endogenous RNA, lncRNA SNHG1 exerts an inhibitory influence on osteogenic differentiation via the miR-497-5p/HIF1AN axis. This highlights the potential for lncRNA SNHG1 to emerge as a promising therapeutic target for osteoporosis. The study's findings pave the way for a novel target strategy in the future treatment of osteoporosis.
Collapse
Affiliation(s)
- Yuanyuan Lu
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Kaihua Pan
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Yunqing Zhang
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Jiang Peng
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Daning Cao
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| | - Xiaoming Li
- Department of Orthopaedics, The first hospital of Changsha, Changsha, P.R. China
| |
Collapse
|
10
|
Liu M, Liu Y, Luo F. The role and mechanism of platelet-rich fibrin in alveolar bone regeneration. Biomed Pharmacother 2023; 168:115795. [PMID: 37918253 DOI: 10.1016/j.biopha.2023.115795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/21/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023] Open
Abstract
Platelet-rich fibrin (PRF), as an autologous blood preparation, has been receiving increasing attention in recent years and has been successfully applied in various clinical treatments for alveolar bone regeneration in the oral field. This review focuses on analyzing and summarizing the role and mechanism of PRF in alveolar bone regeneration. We first provide a brief introduction to PRF, then summarize the mechanisms by which PRF promotes alveolar bone regeneration from three aspects: osteogenesis mechanism, bone induction mechanism, and bone conduction mechanism, involving multiple signaling pathways such as Smad, ERK1/2, PI3K/Akt, and Wnt/β-catenin. We also explore the various roles of PRF as a scaffold, filler, and in combination with bone graft materials, detailing how PRF promotes alveolar bone regeneration and provides a wealth of experimental evidence. Finally, we summarize the current applications of PRF in various oral fields. The role of PRF in alveolar bone regeneration is becoming increasingly important, and its role and mechanism are receiving more and more research and understanding. This article will provide a reference of significant value for research in related fields. The exploration of the role and mechanism of PRF in alveolar bone regeneration may lead to the discovery of new therapeutic targets and the development of more effective and efficient treatment strategies.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yu Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
11
|
Qin X, Wei Q, An R, Yang Y, Cai M, Han X, Mao H, Gao X. Regulation of bone and fat balance by Fructus Ligustri Lucidi in ovariectomized mice. PHARMACEUTICAL BIOLOGY 2023; 61:391-403. [PMID: 36740874 PMCID: PMC9904306 DOI: 10.1080/13880209.2023.2168019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 12/03/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Fructus Ligustri Lucidi (FLL), a commonly used herb of traditional Chinese medicine (TCM), is the fruit of Ligustrum lucidum Ait. (Oleaceae). The ethanol extract of FLL is a potential candidate for preventing and treating postmenopausal osteoporosis (PMOP) by nourishing the liver and kidneys. OBJECTIVE This study determines whether an ethanol extract of FLL has anti-osteoporotic effects in ovariectomized (OVX) mice and explores the underlying mechanism. MATERIALS AND METHODS The OVX model of eight-week-old C57BL/6J female mice was taken, and ovariectomy was used as PMOP. Mice were divided into five groups: sham-operated group (n = 10), OVX group (n = 10), OVX + E2 group (n = 10; 0.039 mg/kg), OVX + FLL group (n = 10; 2 g/kg) and OVX + FLL group (n = 10; 4 g/kg). Mice were treated by gavage with FLL or CMCNa once daily for 8 weeks. We harvested uteri, femur, and tibias from mice; bone mineral density (BMD) and bone microstructure were obtained by X-ray absorptiometry and micro-CT. Furthermore, the effect of FLL on the balance of osteoblast and adipocyte differentiation was investigated using bone marrow mesenchymal stem cells (BMMSCs). RESULTS The results indicated that FLL did not affect OVX-induced estradiol reduction. Compared with OVX mice, FLL significantly increased BMD (63.54 vs. 61.96), Conn. D (86.46 vs. 57.00), and left tibial strength (13.91 vs. 11.27), decreased Tb. Sp (0.38 vs. 0.44) and body fat content (4.19% vs. 11.24%). FLL decreased osteoclast activity and enhanced RUNX2 expression; inhibited perilipin peroxisome proliferator-activated receptor gamma (PPARγ) expression and adipocyte differentiation from BMMSCs. CONCLUSIONS FLL prevented additional bone loss and improved bone microstructure in OVX mice by modulating bone and fat balance, suggesting that FLL might be a therapeutic agent for PMOP.
Collapse
Affiliation(s)
- Xiaoyan Qin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiu Wei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ran An
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingqi Cai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoling Han
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Haoping Mao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
12
|
Li D, Liu L, He X, Wang N, Sun R, Li X, Yu T, Chu XM. Roles of long non-coding RNAs in angiogenesis-related diseases: Focusing on non-neoplastic aspects. Life Sci 2023; 330:122006. [PMID: 37544376 DOI: 10.1016/j.lfs.2023.122006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/28/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Angiogenesis is a key process in organ and tissue morphogenesis, as well as growth during human development, and is coordinated by pro- and anti-angiogenic factors. When this balance is affected, the related physiological and pathological changes lead to disease. Long non-coding RNAs (lncRNAs) are an important class of non-coding RNAs that do not encode proteins, but play a dynamic role in regulating gene expression. LncRNAs have been reported to be extensively involved in angiogenesis, particularly tumor angiogenesis. The non-tumor aspects have received relatively little attention and summary, but there is a broad space for research and exploration on lncRNA-targeted angiogenesis in this area. In this review, we focus on lncRNAs in angiogenesis-related diseases other than tumors, such as atherosclerosis, myocardial infarction, stroke, diabetic complications, hypertension, osteoporosis, dermatosis, as well as, endocrine, neurological, and other systemic disorders. Moreover, multiple cell types have been implicated in lncRNA-targeted angiogenesis, but only endothelial cells have attracted widespread attention. Thus, we explore the roles of other cells. Finally, we summarize the potential research directions in the area of lncRNAs and angiogenesis that can be undertaken by combining cutting-edge technology and interdisciplinary research, which will provide new insights into the involvement of lncRNAs in angiogenesis-related diseases.
Collapse
Affiliation(s)
- Daisong Li
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Lili Liu
- School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao, People's Republic of China
| | - Xiangqin He
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Ni Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Ruicong Sun
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China
| | - Xiaolu Li
- Department of Echocardiography, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Tao Yu
- Institute for Translational Medicine, Qingdao University, No. 38 Dengzhou Road, 266021, People's Republic of China.
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao 266100, People's Republic of China; Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, No. 5 Zhiquan Road, Qingdao 266000, People's Republic of China.
| |
Collapse
|
13
|
Jin L, Long Y, Zhang Q, Long J. MiRNAs regulate cell communication in osteogenesis-angiogenesis coupling during bone regeneration. Mol Biol Rep 2023; 50:8715-8728. [PMID: 37642761 DOI: 10.1007/s11033-023-08709-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/25/2023] [Indexed: 08/31/2023]
Abstract
Bone regeneration is a complex process that requires not only the participation of multiple cell types, but also signal communication between cells. The two basic processes of osteogenesis and angiogenesis are closely related to bone regeneration and bone homeostasis. H-type vessels are a subtype of bone vessels characterized by high expression of CD31 and EMCN. These vessels play a key role in the regulation of bone regeneration and are important mediators of coupling between osteogenesis and angiogenesis. Molecular regulation between different cell types is important for coordination of osteogenesis and angiogenesis that promotes bone regeneration. MiRNAs are small non-coding RNAs that predominantly regulate gene expression at the post-transcriptional level and are closely related to cell communication. Specifically, miRNAs transduce external stimuli through various cell signaling pathways and cause a series of physiological and pathological effects. They are also deeply involved in the bone repair process. This review focuses on three signaling pathways related to osteogenesis-angiogenesis coupling, as well as the miRNAs involved in these pathways. Elucidation of the molecular mechanisms governing osteogenesis and angiogenesis is of great significance for bone regeneration.
Collapse
Affiliation(s)
- Liangyu Jin
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Yifei Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Qiuling Zhang
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China
| | - Jie Long
- The State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, 610041, PR China.
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, PR China.
- National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
14
|
An F, Wang X, Wang C, Liu Y, Sun B, Zhang J, Gao P, Yan C. Research progress on the role of lncRNA-miRNA networks in regulating adipogenic and osteogenic differentiation of bone marrow mesenchymal stem cells in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1210627. [PMID: 37645421 PMCID: PMC10461560 DOI: 10.3389/fendo.2023.1210627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/26/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoporosis (OP) is characterized by a decrease in osteoblasts and an increase in adipocytes in the bone marrow compartment, alongside abnormal bone/fat differentiation, which ultimately results in imbalanced bone homeostasis. Bone marrow mesenchymal stem cells (BMSCs) can differentiate into osteoblasts and adipocytes to maintain bone homeostasis. Several studies have shown that lncRNAs are competitive endogenous RNAs that form a lncRNA-miRNA network by targeting miRNA for the regulation of bone/fat differentiation in BMSCs; this mechanism is closely related to the corresponding treatment of OP and is important in the development of novel OP-targeted therapies. However, by reviewing the current literature, it became clear that there are limited summaries discussing the effects of the lncRNA-miRNA network on osteogenic/adipogenic differentiation in BMSCs. Therefore, this article provides a review of the current literature to explore the impact of the lncRNA-miRNA network on the osteogenic/adipogenic differentiation of BMSCs, with the aim of providing a new theoretical basis for the treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaxia Wang
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunmei Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
15
|
Deng YJ, Li Z, Wang B, Li J, Ma J, Xue X, Tian X, Liu QC, Zhang Y, Yuan B. Immune-related gene IL17RA as a diagnostic marker in osteoporosis. Front Genet 2023; 14:1219894. [PMID: 37600656 PMCID: PMC10436292 DOI: 10.3389/fgene.2023.1219894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Objectives: Bone immune disorders are major contributors to osteoporosis development. This study aims to identify potential diagnostic markers and molecular targets for osteoporosis treatment from an immunological perspective. Method: We downloaded dataset GSE56116 from the Gene Expression Omnibus database, and identified differentially expressed genes (DEGs) between normal and osteoporosis groups. Subsequently, differentially expressed immune-related genes (DEIRGs) were identified, and a functional enrichment analysis was performed. A protein-protein interaction network was also constructed based on data from STRING database to identify hub genes. Following external validation using an additional dataset (GSE35959), effective biomarkers were confirmed using RT-qPCR and immunohistochemical (IHC) staining. ROC curves were constructed to validate the diagnostic values of the identified biomarkers. Finally, a ceRNA and a transcription factor network was constructed, and a Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed to explore the biological functions of these diagnostic markers. Results: In total, 307 and 31 DEGs and DEIRGs were identified, respectively. The enrichment analysis revealed that the DEIRGs are mainly associated with Gene Ontology terms of positive regulation of MAPK cascade, granulocyte chemotaxis, and cytokine receptor. protein-protein interaction network analysis revealed 10 hub genes: FGF8, KL, CCL3, FGF4, IL9, FGF9, BMP7, IL17RA, IL12RB2, CD40LG. The expression level of IL17RA was also found to be significantly high. RT-qPCR and immunohistochemical results showed that the expression of IL17RA was significantly higher in osteoporosis patients compared to the normal group, as evidenced by the area under the curve Area Under Curve of 0.802. Then, we constructed NEAT1-hsa-miR-128-3p-IL17RA, and SNHG1-hsa-miR-128-3p-IL17RA ceRNA networks in addition to ERF-IL17RA, IRF8-IL17RA, POLR2A-IL17RA and ERG-IL17RA transcriptional networks. Finally, functional enrichment analysis revealed that IL17RA was involved in the development and progression of osteoporosis by regulating local immune and inflammatory processes in bone tissue. Conclusion: This study identifies the immune-related gene IL17RA as a diagnostic marker of osteoporosis from an immunological perspective, and provides insight into its biological function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bin Yuan
- Department of Spine Surgery, Xi’an Daxing Hospital, Yanan University, Xi’an, China
| |
Collapse
|
16
|
Wu J, Zhang L, Liu H, Zhang J, Tang P. Exosomes promote hFOB1.19 proliferation and differentiation via LINC00520. J Orthop Surg Res 2023; 18:546. [PMID: 37516879 PMCID: PMC10387216 DOI: 10.1186/s13018-023-04021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/15/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Osteoporosis remains a significant clinical challenge worldwide. Recent studies have shown that exosomes stimulate bone regeneration. Thus, it is worthwhile to explore whether exosomes could be a useful therapeutic strategy for osteoporosis. The purpose of this study was to investigate the effects of exosomes derived from human umbilical cord mesenchymal stem cells (hucMSCs) on osteoblast proliferation and differentiation. METHODS Exosomes were isolated from hucMSCs. Bioinformatics analysis was performed to identify the differentially expressed lncRNAs in myeloma-derived mesenchymal stem cells. Plasmids encoding LINC00520 or short hairpin RNA of LINC00520 were transfected into hucMSCs and then exosomes were isolated. After human osteoblasts hFOB1.19 were exposed to the obtained exosomes, cell survival, cell cycle, apoptosis and calcium deposits of hFOB1.19 cell were detected by MTT, 7-aminoactinomycin D, Annexin V-FITC/propidium iodide and Alizarin red staining, respectively. RESULTS In hFOB1.19 cells, 10 × 109/mL hucMSC-derived exosomes inhibited cell proliferation, arrested cell cycle, and promoted apoptosis, while hucMSCs or 1 × 109/mL exosomes promoted cell proliferation, accelerated cell cycle, and promoted calcium deposits and the expression of OCN, RUNX2, collagen I and ALP. In hFOB1.19 cells, exosomes from hucMSCs with LINC00520 knockdown reduced the survival and calcium deposits, arrested the cell cycle, and enhanced the apoptosis, while exosomes from hucMSCs overexpressing LINC00520 enhance the proliferation and calcium deposits and accelerated the cell cycle. CONCLUSIONS LINC00520 functions as a modulator of calcium deposits, and exosomes derived from hucMSCs overexpressing LINC00520 might be a novel therapeutic approach for osteoporosis.
Collapse
Affiliation(s)
- Jin Wu
- Medical School of Chinese PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China
- Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China
- Department of Orthopedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, 363000, China
| | - Licheng Zhang
- Medical School of Chinese PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Hui Liu
- Department of Orthopedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, 363000, China
| | - Jinhui Zhang
- Department of Orthopedics, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, 363000, China
| | - Peifu Tang
- Medical School of Chinese PLA, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, China.
- Department of Orthopedics, National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
17
|
Liu P, Wang S, Li K, Yang Y, Man Y, Du F, Wang L, Tian J, Su G. Exosomal microRNA‑4516, microRNA‑203 and SFRP1 are potential biomarkers of acute myocardial infarction. Mol Med Rep 2023; 27:124. [PMID: 37203392 PMCID: PMC10206682 DOI: 10.3892/mmr.2023.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/20/2023] [Indexed: 05/20/2023] Open
Abstract
Acute myocardial infarction (AMI) is a serious disease which threatens public health. Exosomes (exos) contain certain genetic information and are important communication vehicles between cells. In the present study, different exosomal microRNAs (miRs), which exhibit a notable association between expression levels in plasma and AMI were assessed to support the development of new diagnostic and clinical assessment markers of patients with AMI. In total, 93 individuals, including 31 healthy controls and 62 patients with AMI, were recruited for the present study. Data on age, blood pressure, glucose levels, lipid levels and coronary angiography images were collected from the enrolled individuals, and plasma samples were collected. Plasma exos were extracted and verified using ultracentrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting (WB). Exo‑miR‑4516 and exo‑miR‑203 in plasma exos were identified by exosomal miRNA sequencing analysis, reverse transcription‑quantitative PCR was performed to detect the levels of exo‑miR‑4516 and exo‑miR‑203 in plasma exos, and ELISA was performed to detect the levels of secretory frizzled‑related protein 1 (SFRP1) in samples. The correlation analysis between exo‑miR‑4516, exo‑miR‑203 and SFRP1 in plasma exos and AMI was presented as receiver operating characteristic curves (ROCs) of the SYNTAX score, cardiac troponin I (cTnI), low‑density lipoprotein (LDL) and each indicator separately. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed to predict relevant enrichment pathways. Exos were successfully isolated from plasma by ultracentrifugation, which was confirmed by TEM, NTA and WB. Exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels in plasma were significantly higher in the AMI group compared with the healthy control group. ROCs demonstrated that exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels had a high diagnostic efficiency in predicting AMI. Exo‑miR‑4516 was positively correlated with SYNTAX score, and plasma SFRP1 was positively correlated with plasma cTnI and LDL. In conclusion, the data demonstrated that exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels could be used in combination to diagnose and assess the severity of AMI. The present study was retrospectively registered (TRN, NCT02123004).
Collapse
Affiliation(s)
- Peng Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Shuya Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Kaiyuan Li
- Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yang Yang
- Department of Cardiovascular Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yilong Man
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Fengli Du
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
- Department of Cardiovascular Medicine, Shandong Provincial Public Health Centre, Jinan, Shandong 250000, P.R. China
| | - Lei Wang
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Jing Tian
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| | - Guohai Su
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan Central Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
18
|
Zhang H, Ma B, Li N, Zhang L, Xu J, Zhang S, Guo Z, Han C, Xu S, Li X, Zhang B. SNHG1, a KLF4-upregulated gene, promotes glioma cell survival and tumorigenesis under endoplasmic reticulum stress by upregulating BIRC3 expression. J Cell Mol Med 2023. [PMID: 37243389 DOI: 10.1111/jcmm.17779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 04/13/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Increasing evidence indicates that long noncoding RNAs (lncRNAs) play crucial roles in the resistance to endoplasmic reticulum (ER) stress in many cancers. However, ER stress-regulated lncRNAs are still unknown in glioma. In the present study, we investigated the altered lncRNAs upon ER stress in glioma and found that small nucleolar RNA host gene 1 (SNHG1) was markedly increased in response to ER stress. Increased SNHG1 suppressed ER stress-induced apoptosis and promoted tumorigenesis in vitro and in vivo. Further mechanistic studies indicated that SNHG1 elevated BIRC3 mRNA stability and enhanced BIRC3 expression. We also found that KLF4 transcriptionally upregulated SNHG1 expression and contributed to the ER stress-induced SNHG1 increase. Collectively, the present findings indicated that SNHG1 is a KLF4-regulated lncRNA that suppresses ER stress-induced apoptosis and facilitates gliomagenesis by elevating BIRC3 expression.
Collapse
Affiliation(s)
- Hongqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Binbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Na Li
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Li Zhang
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Jialu Xu
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shuqi Zhang
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Ziming Guo
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Chuanchun Han
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Shasha Xu
- Department of Gastroendoscopy, the Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, College of Basic Medical Science, Dalian Medical University, Dalian, China
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Neurosurgery, The Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Neurosurgery Department of School of Medicine, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
19
|
Zhang W, Liu Y, Luo Y, Shu X, Pu C, Zhang B, Feng P, Xiong A, Kong Q. New insights into the role of long non-coding RNAs in osteoporosis. Eur J Pharmacol 2023; 950:175753. [PMID: 37119958 DOI: 10.1016/j.ejphar.2023.175753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Osteoporosis is a common disease in elderly individuals, and osteoporosis can easily lead to bone and hip fractures that seriously endanger the health of elderly individuals. At present, the treatment of osteoporosis is mainly anti-osteoporosis drugs, but there are side effects associated with anti-osteoporosis drugs. Therefore, it is very important to develop early diagnostic indicators and new therapeutic drugs for the prevention and treatment of osteoporosis. Long noncoding RNAs (lncRNAs), noncoding RNAs longer than 200 nucleotides, can be used as diagnostic markers for osteoporosis, and lncRNAs play an important role in the progression of osteoporosis. Many studies have shown that lncRNAs can be the target of osteoporosis. Therefore, herein, the role of lncRNAs in osteoporosis is summarized, aiming to provide some information for the prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuheng Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuanrui Luo
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiang Shu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Congmin Pu
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Sichuan University, Chengdu, 610041, China
| | - Bin Zhang
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Pin Feng
- Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ao Xiong
- Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Orthopedics, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Bell-Hensley A, Das S, McAlinden A. The miR-181 family: Wide-ranging pathophysiological effects on cell fate and function. J Cell Physiol 2023; 238:698-713. [PMID: 36780342 PMCID: PMC10121854 DOI: 10.1002/jcp.30969] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023]
Abstract
MicroRNAs (miRNAs) are epigenetic regulators that can target and inhibit translation of multiple mRNAs within a given cell type. As such, a number of different pathways and networks may be modulated as a result. In fact, miRNAs are known to regulate many cellular processes including differentiation, proliferation, inflammation, and metabolism. This review focuses on the miR-181 family and provides information from the published literature on the role of miR-181 homologs in regulating a range of activities in different cell types and tissues. Of note, we have not included details on miR-181 expression and function in the context of cancer since this is a broad topic area requiring independent review. Instead, we have focused on describing the function and mechanism of miR-181 family members on differentiation toward a number of cell lineages in various non-neoplastic conditions (e.g., immune/hematopoietic cells, osteoblasts, osteoclasts, chondrocytes, adipocytes). We have also provided information on how modulation of miR-181 homologs can have positive effects on disease states such as cardiac abnormalities, pulmonary arterial hypertension, thrombosis, osteoarthritis, and vascular inflammation. In this context, we have used some examples of FDA-approved drugs that modulate miR-181 expression. We conclude by discussing some common mechanisms by which miR-181 homologs appear to regulate a number of different cellular processes and how targeting specific miR-181 family members may lead to attractive therapeutic approaches to treat a number of human disease or repair conditions, including those associated with the aging process.
Collapse
Affiliation(s)
- Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St Louis, Missouri
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Audrey McAlinden
- Department of Orthopaedic Surgery Washington University School of Medicine, St Louis, Missouri
- Department of Cell Biology & Physiology, Washington University School of Medicine, St Louis, Missouri, USA
- Shriners Hospital for Children – St Louis, Missouri
| |
Collapse
|
21
|
Chen Y, Sun Y, Xue X, Ma H. Comprehensive analysis of epigenetics mechanisms in osteoporosis. Front Genet 2023; 14:1153585. [PMID: 37056287 PMCID: PMC10087084 DOI: 10.3389/fgene.2023.1153585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic modification pertains to the alteration of genetic-expression, which could be transferred to the next generations, without any alteration in the fundamental DNA sequence. Epigenetic modification could include various processes such as DNA methylation, histone alteration, non-coding RNAs (ncRNAs), and chromatin adjustment are among its primary operations. Osteoporosis is a metabolic disorder that bones become more fragile due to the decrease in mineral density, which could result in a higher risk of fracturing. Recently, as the investigation of the causal pathology of osteoporosis has been progressed, remarkable improvement has been made in epigenetic research. Recent literatures have illustrated that epigenetics is estimated to be one of the most contributing factors to the emergence and progression of osteoporosis. This dissertation primarily focuses on indicating the research progresses of epigenetic mechanisms and also the regulation of bone metabolism and the pathogenesis of osteoporosis in light of the significance of epigenetic mechanisms. In addition, it aims to provide new intelligence for the treatment of diseases related to bone metabolism.
Collapse
Affiliation(s)
- Yuzhu Chen
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yumiao Sun
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiangyu Xue
- Harbin Medical University, Harbin, Heilongjiang, China
| | - Huanzhi Ma
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Huanzhi Ma,
| |
Collapse
|
22
|
Hou J, Liu D, Zhao J, Qin S, Chen S, Zhou Z. Long non-coding RNAs in osteoporosis: from mechanisms of action to therapeutic potential. Hum Cell 2023; 36:950-962. [PMID: 36881335 DOI: 10.1007/s13577-023-00888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023]
Abstract
Osteoporosis is a clinical disease characterized by decreased bone density due to a disrupted balance between bone formation and resorption, which increases fracture risk and negatively affects the quality of life of a patient. LncRNAs are RNA molecules over 200 nucleotides in length with non-coding potential. Many studies have demonstrated that numerous biological processes involved in bone metabolism are affected. However, the complex mechanisms of action of lncRNAs and their clinical applications in osteoporosis have not yet been fully elucidated. LncRNAs, as epigenetic regulators, are widely involved in the regulation of gene expression during osteogenic and osteoclast differentiation. LncRNAs affect bone homeostasis and osteoporosis development through different signaling pathways and regulatory networks. Additionally, researchers have found that lncRNAs have great potential for clinical application in the treatment of osteoporosis. In this review, we summarize the research results on lncRNAs for clinical prevention, rehabilitation treatment, drug development, and targeted therapy for osteoporosis. Moreover, we summarize the regulatory modes of various signaling pathways through which lncRNAs affect the development of osteoporosis. Overall, these studies suggest that lncRNAs can be used as novel targeted molecular drugs for the clinical treatment of osteoporosis to improve symptoms.
Collapse
Affiliation(s)
- Jianglin Hou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Jihui Zhao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Sen Qin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Senxiang Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| |
Collapse
|
23
|
An F, Meng X, Yuan L, Niu Y, Deng J, Li Z, Liu Y, Xia R, Liu S, Yan C. Network regulatory mechanism of ncRNA on the Wnt signaling pathway in osteoporosis. Cell Div 2023; 18:3. [PMID: 36879309 PMCID: PMC9990358 DOI: 10.1186/s13008-023-00086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Non-coding RNA (ncRNA) is a type of non-protein-coding RNA molecule transcribed from the genome which performs broad regulation of a variety of biological functions in human cells. The Wnt signaling pathway is highly conserved in multicellular organisms, playing an important role in their growth and development. Increasing evidence suggests that ncRNA can regulate cell biological function, enhance bone metabolism, and maintain normal bone homeostasis by interacting with the Wnt pathway. Studies have also demonstrated that the association of ncRNA with the Wnt pathway may be a potential biomarker for the diagnosis, evaluation of prognosis, and treatment of osteoporosis. The interaction of ncRNA with Wnt also performs an important regulatory role in the occurrence and development of osteoporosis. Targeted therapy of the ncRNA/Wnt axis may ultimately be the preferred choice for the treatment of osteoporosis in the future. The current article reviews the mechanism of the ncRNA/Wnt axis in osteoporosis and reveals the relationship between ncRNA and Wnt, thereby exploring novel molecular targets for the treatment of osteoporosis and providing theoretical scientific guidance for its clinical treatment.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Xiangrui Meng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yanqiang Niu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Deng
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhaohui Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| | - Ruoliu Xia
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Shiqing Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
24
|
You Y, Liu J, Zhang L, Li X, Sun Z, Dai Z, Ma J, Jiao G, Chen Y. WTAP-mediated m 6A modification modulates bone marrow mesenchymal stem cells differentiation potential and osteoporosis. Cell Death Dis 2023; 14:33. [PMID: 36650131 PMCID: PMC9845239 DOI: 10.1038/s41419-023-05565-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
An imbalance in the differentiation potential of bone marrow mesenchymal stem cells (BMSCs) is an important pathogenic mechanism underlying osteoporosis (OP). N6-methyladenosine (m6A) is the most common post-transcriptional modification in eukaryotic cells. The role of the Wilms' tumor 1-associated protein (WTAP), a member of the m6A functional protein family, in regulating BMSCs differentiation remains unknown. We used patient-derived and mouse model-derived samples, qRT-PCR, western blot assays, ALP activity assay, ALP, and Alizarin Red staining to determine the changes in mRNA and protein levels of genes and proteins associated with BMSCs differentiation. Histological analysis and micro-CT were used to evaluate developmental changes in the bone. The results determined that WTAP promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs. We used co-immunoprecipitation (co-IP), RNA immunoprecipitation (RIP), methylated RNA immunoprecipitation (MeRIP), RNA pulldown, and dual-luciferase assay to explore the direct mechanism. Mechanistically, the expression of WTAP increased during osteogenic differentiation and significantly promoted pri-miR-181a and pri-miR-181c methylation, which was recognized by YTHDC1, and increased the maturation to miR-181a and miR-181c. MiR-181a and miR-181c inhibited the mRNA expression of SFRP1, promoting the osteogenic differentiation of BMSCs. Our results demonstrated that the WTAP/YTHDC1/miR-181a and miR-181c/SFRP1 axis regulated the differentiation fate of BMSCs, suggesting that it might be a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Yunhao You
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Jincheng Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Lu Zhang
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Xiang Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Zhenqian Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Zihan Dai
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Jinlong Ma
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
- The First Clinical College of Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Guangjun Jiao
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China
| | - Yunzhen Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, 250012, Jinan, Shandong, China.
| |
Collapse
|
25
|
Yan L, Liao L, Su X. Role of mechano-sensitive non-coding RNAs in bone remodeling of orthodontic tooth movement: recent advances. Prog Orthod 2022; 23:55. [PMID: 36581789 PMCID: PMC9800683 DOI: 10.1186/s40510-022-00450-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/15/2022] [Indexed: 12/31/2022] Open
Abstract
Orthodontic tooth movement relies on bone remodeling and periodontal tissue regeneration in response to the complicated mechanical cues on the compressive and tensive side. In general, mechanical stimulus regulates the expression of mechano-sensitive coding and non-coding genes, which in turn affects how cells are involved in bone remodeling. Growing numbers of non-coding RNAs, particularly mechano-sensitive non-coding RNA, have been verified to be essential for the regulation of osteogenesis and osteoclastogenesis and have revealed how they interact with signaling molecules to do so. This review summarizes recent findings of non-coding RNAs, including microRNAs and long non-coding RNAs, as crucial regulators of gene expression responding to mechanical stimulation, and outlines their roles in bone deposition and resorption. We focused on multiple mechano-sensitive miRNAs such as miR-21, - 29, -34, -103, -494-3p, -1246, -138-5p, -503-5p, and -3198 that play a critical role in osteogenesis function and bone resorption. The emerging roles of force-dependent regulation of lncRNAs in bone remodeling are also discussed extensively. We summarized mechano-sensitive lncRNA XIST, H19, and MALAT1 along with other lncRNAs involved in osteogenesis and osteoclastogenesis. Ultimately, we look forward to the prospects of the novel application of non-coding RNAs as potential therapeutics for tooth movement and periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lichao Yan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Pediatric Dentistry and Engineering Research Center of Oral Translational Medicine and National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
26
|
Tan AQ, Zheng YF. The Roles of SNHG Family in Osteoblast Differentiation. Genes (Basel) 2022; 13:2268. [PMID: 36553535 PMCID: PMC9777675 DOI: 10.3390/genes13122268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Small nucleolar RNA host genes (SNHGs), members of long-chain noncoding RNAs (lncRNAs), have received increasing attention regarding their roles in multiple bone diseases. Studies have revealed that SNHGs display unique expression profile during osteoblast differentiation and that they could act as promising biomarkers of certain bone diseases, such as osteoporosis. Osteogenesis of mesenchymal stem cells (MSCs) is an important part of bone repair and reconstruction. Moreover, studies confirmed that the SNHG family participate in the regulation of osteogenic differentiation of MSCs in part by regulating important pathways of osteogenesis, such as Wnt/β-catenin signaling. Based on these observations, clarifying the SNHG family's roles in osteogenesis (especially in MSCs) and their related mechanisms would provide novel ideas for possible applications of lncRNAs in the diagnosis and treatment of bone diseases. After searching, screening, browsing and intensive reading, we uncovered more than 30 papers related to the SNHG family and osteoblast differentiation that were published in recent years. Here, our review aims to summarize these findings in order to provide a theoretical basis for further research.
Collapse
Affiliation(s)
| | - Yun-Fei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, No. 22, Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| |
Collapse
|
27
|
Huang MZ, Chen HY, Peng GX, Sun H, Peng HC, Li HY, Liu XH, Li Q. Exosomes from artesunate-treated bone marrow-derived mesenchymal stem cells transferring SNHG7 to promote osteogenesis via TAF15-RUNX2 pathway. Regen Med 2022; 17:819-833. [DOI: 10.2217/rme-2022-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Effect of artesunate (ART)-treated bone marrow-derived mesenchymal stem cells-derived exosomes (BMSC-Exos) on osteogenesis and its underlying mechanisms were investigated. Materials & methods: Proliferation, alkaline phosphatase activity and calcified nodule formation of osteoblasts were determined. A mouse model of osteoporosis was established by ovariectomy. Results: SNHG7 was upregulated in BMSC-Exos by twofold, which was further enhanced in ART-BMSC-Exos by about twofold. ART intensified BMSC-Exos-induced proliferation, alkaline phosphatase activity by about fourfold, calcified nodule formation by about threefold and upregulation of osteogenesis related molecules RUNX2 (by 50%), BMP2 (by 30%) and ATF4 (by 40%) via delivering SNHG7. Mechanistically, SNHG7 recruited TAF15 to facilitate RUNX2 stability. Conclusion: ART-BMSC-Exos facilitated osteogenesis via delivering SNHG7 by modulating TAF15/RUNX2 axis.
Collapse
Affiliation(s)
- Ming-Zhi Huang
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Hong-Yan Chen
- Department of Oncology, Affiliated Hospital of Guizhou Medical University, Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Guo-Xuan Peng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Hong Sun
- Department of Orthopedics, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Hong-Cheng Peng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Hai-Yang Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Xiang-Hui Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
| | - Qing Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, 550001, China
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, China
| |
Collapse
|
28
|
Han S, Cao Y, Guo T, Lin Q, Luo F. Targeting lncRNA/Wnt axis by flavonoids: A promising therapeutic approach for colorectal cancer. Phytother Res 2022; 36:4024-4040. [PMID: 36227024 DOI: 10.1002/ptr.7550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
Despite the dramatic advances in our understanding of the etiology of colorectal cancer (CRC) in recent decades, effective therapeutic strategies are still urgently needed. Oncogenic mutations in the Wnt/β-Catenin pathway are hallmarks of CRC. Moreover, long non-coding RNAs (lncRNAs) as molecular managers are involved in the initiation, progression, and metastasis of CRC. Therefore, it is important to further explore the interaction between lncRNAs and Wnt/β-Catenin signaling pathway for targeted therapy of CRC. Natural phytochemicals have not toxicity and can target carcinogenesis-related pathways. Growing evidences suggest that flavonoids are inversely associated with CRC risk. These bioactive compounds could target carcinogenesis pathways of CRC and reduced the side effects of anti-cancer drugs. The review systematically summarized the progress of flavonoids targeting lncRNA/Wnt axis in the investigations of CRC, which will provide a promising therapeutic approach for CRC and develop nutrition-oriented preventive strategies for CRC based on epigenetic mechanisms. In the field, more epidemiological and clinical trials are required in the future to verify feasibility of targeting lncRNA/Wnt axis by flavonoids in the therapy and prevention of CRC.
Collapse
Affiliation(s)
- Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Yunyun Cao
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, People's Republic of China
| |
Collapse
|
29
|
Zhao H, Li L, Zhao N, Lu A, Lu C, He X. The effect of long non-coding RNAs in joint destruction of rheumatoid arthritis. Front Cell Dev Biol 2022; 10:1011371. [PMID: 36263019 PMCID: PMC9574091 DOI: 10.3389/fcell.2022.1011371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease accompanied with joint destruction. Serious joint destruction will eventually lead to disability and the decline of life quality in RA patients. At present, the therapeutic effect of drugs to alleviate joint destruction in RA is limited. Recently, accumulating evidences have shown that long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of joint diseases. Therefore, this paper reviews the expression change and the action mechanism of lncRNAs in joint destruction of RA in recent years. A more comprehensive understanding of the role of lncRNAs in joint destruction will help the treatment of RA.
Collapse
Affiliation(s)
- Hanxiao Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Shanghai GuangHua Hospital of Integrated Traditional Chinese and Western Medicine, Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Aiping Lu, ; Cheng Lu, ; Xiaojuan He,
| |
Collapse
|
30
|
Yang C, Passos Gibson V, Hardy P. The Role of MiR-181 Family Members in Endothelial Cell Dysfunction and Tumor Angiogenesis. Cells 2022; 11:1670. [PMID: 35626707 PMCID: PMC9140109 DOI: 10.3390/cells11101670] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial dysfunction plays a critical role in many human angiogenesis-related diseases, including cancer and retinopathies. Small non-coding microRNAs (miRNAs) repress gene expression at the post-transcriptional level. They are critical for endothelial cell gene expression and function and are involved in many pathophysiological processes. The miR-181 family is one of the essential angiogenic regulators. This review summarizes the current state of knowledge of the role of miR-181 family members in endothelial cell dysfunction, with emphasis on their pathophysiological roles in aberrant angiogenesis. The actions of miR-181 members are summarized concerning their targets and associated major angiogenic signaling pathways in a cancer-specific context. Elucidating the underlying functional mechanisms of miR-181 family members that are dysregulated in endothelial cells or cancer cells is invaluable for developing miRNA-based therapeutics for angiogenesis-related diseases such as retinopathies, angiogenic tumors, and cancer. Finally, potential clinical applications of miR-181 family members in anti-angiogenic tumor therapy are discussed.
Collapse
Affiliation(s)
- Chun Yang
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Victor Passos Gibson
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
| | - Pierre Hardy
- Research Center of CHU Sainte-Justine, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, University of Montréal, Quebec, QC H3T 1C5, Canada;
- Departments of Pediatrics, University of Montréal, Quebec, QC H3T 1C5, Canada
| |
Collapse
|
31
|
Ding L, Gu S, Zhou B, Wang M, Zhang Y, Wu S, Zou H, Zhao G, Gao Z, Xu L. Ginsenoside Compound K Enhances Fracture Healing via Promoting Osteogenesis and Angiogenesis. Front Pharmacol 2022; 13:855393. [PMID: 35462912 PMCID: PMC9020191 DOI: 10.3389/fphar.2022.855393] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Fractures have an extraordinarily negative impact on an individual’s quality of life and functional status, particularly delayed or non-union fractures. Osteogenesis and angiogenesis are closely related to bone growth and regeneration, and bone modeling and remodeling. Recently Chinese medicine has been extensively studied to promote osteogenic differentiation in MSCs. Studies have found that Ginseng can be used as an alternative for tissue regeneration and engineering. Ginseng is a commonly used herbal medicine in clinical practice, and one of its components, Ginsenoside Compound K (CK), has received much attention. Evidence indicates that CK has health-promoting effects in inflammation, atherosclerosis, diabetics, aging, etc. But relatively little is known about its effect on bone regeneration and the underlying cellular and molecular mechanisms. In this study, CK was found to promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs) by RT-PCR and Alizarin Red S staining in vitro. Mechanistically, we found CK could promote osteogenesis through activating Wnt/β-catenin signaling pathway by immunofluorescence staining and luciferase reporter assay. And we also showed that the tube formation capacity of human umbilical vein endothelial cells (HUVECs) was increased by CK. Furthermore, using the rat open femoral fracture model, we found that CK could improve fracture repair as demonstrated by Micro-CT, biomechanical and histology staining analysis. The formation of H type vessel in the fracture callus was also increased by CK. These findings provide a scientific basis for treating fractures with CK, which may expand its application in clinical practice.
Collapse
Affiliation(s)
- Lingli Ding
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Song Gu
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bingyu Zhou
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Wang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yage Zhang
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Siluo Wu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong Zou
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Guoping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering, Department of Microbiology and Immunology, School of Life Sciences, Fudan University, Shanghai, China
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| | - Zhao Gao
- Er Sha Sports Training Center of Guangdong Province, Guangzhou, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| | - Liangliang Xu
- Key Laboratory of Orthopaedics and Traumatology, Lingnan Medical Research Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Guoping Zhao, ; Zhao Gao, ; Liangliang Xu,
| |
Collapse
|
32
|
Guo X, Zhang J, Han X, Wang G. LncRNA SNHG1 Delayed Fracture Healing via Modulating miR-181a-5p/PTEN Axis. J INVEST SURG 2022; 35:1304-1312. [PMID: 35263556 DOI: 10.1080/08941939.2022.2048926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiuquan Guo
- Department of Spinal Surgery, Zhucheng People’s Hospital, Weifang, Shandong, China
| | - Jialiang Zhang
- Zhucheng Linjia Village Central Health Center, Weifang, Shandong, China
| | - Xuemei Han
- Zhucheng Longdu Health Center, Weifang, Shandong, China
| | - Ganggang Wang
- Department of Hand and Foot Surgery, Zhucheng People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
33
|
The management of bone defect using long non-coding RNA as a potential biomarker for regulating the osteogenic differentiation process. Mol Biol Rep 2022; 49:2443-2453. [PMID: 34973122 PMCID: PMC8863721 DOI: 10.1007/s11033-021-07013-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
Tissue engineered bone brings hope to the treatment of bone defects, and the osteogenic differentiation of stem cells is the key link. Inducing osteogenic differentiation of stem cells may be a potential approach to promote bone regeneration. In recent years, lncRNA has been studied in the field increasingly, which is believed can regulate cell cycle, proliferation, metastasis, differentiation and immunity, participating in a variety of physiology and pathology processes. At present, it has been confirmed that certain lncRNAs regulate the osteogenesis of stem cells and take part in mediating signaling pathways including Wnt/β-catenin, MAPK, TGF-β/BMP, and Notch pathways. Here, we provided an overview of lncRNA, reviewed its researches in the osteogenic differentiation of stem cells, emphasized the importance of lncRNA in bone regeneration, and focused on the roles of lncRNA in signaling pathways, in order to make adequate preparations for applying lncRNA to bone tissue Engineering, letting it regulate the osteogenic differentiation of stem cells for bone regeneration.
Collapse
|
34
|
Zeng Z, Guo R, Wang Z, Yan H, Lv X, Zhao Q, Jiang X, Zhang C, Zhang D, Yang C, Li W, Zhang Z, Wang Q, Huang R, Li B, Hu X, Gao L. Circulating Monocytes Act as a Common Trigger for the Calcification Paradox of Osteoporosis and Carotid Atherosclerosis via TGFB1-SP1 and TNFSF10-NFKB1 Axis. Front Endocrinol (Lausanne) 2022; 13:944751. [PMID: 35937796 PMCID: PMC9354531 DOI: 10.3389/fendo.2022.944751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Osteoporosis often occurs with carotid atherosclerosis and causes contradictory calcification across tissue in the same patient, which is called the "calcification paradox". Circulating monocytes may be responsible for this unbalanced ectopic calcification. Here, we aimed to show how CD14+ monocytes contribute to the pathophysiology of coexisting postmenopausal osteoporosis and carotid atherosclerosis. METHODS We comprehensively analyzed osteoporosis data from the mRNA array dataset GSE56814 and the scRNA-seq dataset GSM4423510. Carotid atherosclerosis data were obtained from the GSE23746 mRNA dataset and GSM4705591 scRNA-seq dataset. First, osteoblast and vascular SMC lineages were annotated based on their functional expression using gene set enrichment analysis and AUCell scoring. Next, pseudotime analysis was applied to draw their differentiated trajectory and identify the key gene expression changes in crossroads. Then, ligand-receptor interactions between CD14+ monocytes and osteoblast and vascular smooth muscle cell (SMC) lineages were annotated with iTALK. Finally, we selected calcification paradox-related expression in circulating monocytes with LASSO analysis. RESULTS First, we found a large proportion of delayed premature osteoblasts in osteoporosis and osteogenic SMCs in atherosclerosis. Second, CD14+ monocytes interacted with the intermediate cells of the premature osteoblast and osteogenic SMC lineage by delivering TGFB1 and TNFSF10. This interaction served as a trigger activating the transcription factors (TF) SP1 and NFKB1 to upregulate the inflammatory response and cell senescence and led to a retarded premature state in the osteoblast lineage and osteogenic transition in the SMC lineage. Then, 76.49% of common monocyte markers were upregulated in the circulating monocytes between the two diseases, which were related to chemotaxis and inflammatory responses. Finally, we identified 7 calcification paradox-related genes on circulating monocytes, which were upregulated in aging cells and downregulated in DNA repair cells, indicating that the aging monocytes contributed to the development of the two diseases. CONCLUSIONS Our work provides a perspective for understanding the triggering roles of CD14+ monocytes in the development of the calcification paradox in osteoporosis- and atherosclerosis-related cells based on combined scRNA and mRNA data. This study provided us with an elucidation of the mechanisms underlying the calcification paradox and could help in developing preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Bo Li
- *Correspondence: Liangbin Gao, ; Xumin Hu, ; Bo Li,
| | - Xumin Hu
- *Correspondence: Liangbin Gao, ; Xumin Hu, ; Bo Li,
| | - Liangbin Gao
- *Correspondence: Liangbin Gao, ; Xumin Hu, ; Bo Li,
| |
Collapse
|
35
|
Li X. LncRNA MALAT1 promotes osteogenic differentiation of BMSCs and inhibits osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis. J Tissue Eng Regen Med 2021; 16:311-329. [PMID: 34962086 DOI: 10.1002/term.3279] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022]
Abstract
Osteoporosis is defined as a skeletal disorder characterized by impairment in bone strength. The potential application of lncRNAs as therapeutic targets for osteoporosis has been unveiled. This study investigated the regulatory mechanism of lncRNA MALAT1 in the differentiation of bone marrow stem cells (BMSCs) and macrophages (Mø) in osteoporosis. MALAT1 expression in peripheral blood of elderly osteoporosis patients and healthy volunteers was detected. BMSCs and mononuclear Mø were isolated and cultured. Osteogenic differentiation of BMSCs and osteoclastic differentiation of Mø were induced. BMSCs and Mø were transfected with si-MALAT1, miR-124-3p mimics, miR-124-3p inhibitor, or pcDNA IGF2BP1, followed by detection of cell differentiation. The target microRNAs (miRs) and downstream genes and signaling pathways of MALAT1 were examined. The ovariectomy-induced mouse model of osteoporosis was established, and the mice were injected with pcDNA-MALAT1. MALAT1 was downregulated in osteoporosis patients, increased in BMSCs after osteogenic differentiation, and diminished in Mø after osteoclastic differentiation. Downregulation of MALAT1 repressed osteogenic differentiation of BMSCs and facilitated osteoclastic differentiation of Mø. MALAT1 upregulated IGF2BP1 expression by competitively binding to miR-124-3p. miR-124-3p silencing reversed the effect of si-MALAT1 on BMSCs and Mø differentiation, and IGF2BP1 upregulation averted the effect of overexpressed-miR-124-3p by activating the Wnt/β-catenin pathway. Upregulation of MALAT1 activated the Wnt/β-catenin pathway and attenuated bone injury in mice. In conclusion, lncRNA MALAT1 promoted the osteogenic differentiation of BMSCs and inhibited osteoclastic differentiation of Mø in osteoporosis via the miR-124-3p/IGF2BP1/Wnt/β-catenin axis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiangxin Li
- Department of Pain, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun, 130021, Jilin, China
| |
Collapse
|