1
|
Huang G, Cai Y, Ren M, Zhang X, Fu Y, Cheng R, Wang Y, Miao M, Zhu L, Yan T. Salidroside sensitizes Triple-negative breast cancer to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy. J Adv Res 2024:S2090-1232(24)00429-6. [PMID: 39353532 DOI: 10.1016/j.jare.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024] Open
Abstract
INTRODUCTION Triple-negative breast cancer (TNBC) is the primary cause of breast cancer-induced death in women. Literature has confirmed the benefits of Salidroside (Sal) in treating TNBC. However, the study about potential therapeutic targets and mechanisms of Sal-anchored TNBC remains limited. OBJECTIVE This study was designed to explore the main targets and potential mechanisms of Sal against TNBC. METHODS Network pharmacology, bioinformatics, and machine learning algorithm strategies were integrated to examine the role, potential targets, and mechanisms of the Sal act in TNBC. MDA-MB-231 cells and tumor-bearing nude mice were chosen for in vitro and in vivo experimentation. Cell viability and cytotoxicity were determined using CCK-8, LDH test, and Calcein-AM/PI staining. Antioxidant defense, lipid peroxidation, and iron metabolism were explored using glutathione, glutathione peroxidase, malondialdehyde (MDA), C11-BODIPY 581/591 probe, and FerroOrange dye. Glutathione peroxidase 4 (GPX4) or stearoyl-CoA desaturase 1 (SCD1) overexpression or nuclear receptor co-activator 4 (NCOA4) deficiency was performed to demonstrate the mechanism of Sal on TNBC. RESULTS The prediction results confirmed that 22 ferroptosis-related genes were identified in Sal and TNBC, revealing that the potential mechanism of the Sal act on TNBC was linked with ferroptosis. Besides, these genes were mainly involved in the mTOR, PI3K/AKT, and autophagy signaling pathway by functional enrichment analysis. The in vitro validation results confirmed that Sal inhibited TNBC cell proliferation by modulating ferroptosis via elevation of intracellular Fe2+ and lipid peroxidation. Mechanistically, Sal sensitized TNBC cells to ferroptosis by inhibiting the PI3K/AKT/mTOR axis, thereby suppressing SCD1-mediated lipogenesis of monounsaturated fatty acids to induce lipid peroxidation, additionally facilitating NCOA4-mediated ferritinophagy to increase intracellular Fe2+ content. The GPX4 or SCD1 overexpression or NCOA4 deficiency results further supported our mechanistic studies. In vivo experimentation confirmed that Sal is vital for slowing down tumor growth by inducing ferroptosis. CONCLUSIONS Overall, this study elucidates TNBC pathogenesis closely linked to ferroptosis and identifies potential biomarkers in TNBC. Meanwhile, the study elucidates that Sal sensitizes TNBC to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy, regulated by PI3K/AKT/mTOR signaling pathways. Our findings provide a theoretical basis for applying Sal to treat TNBC.
Collapse
Affiliation(s)
- Guiqin Huang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yawen Cai
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Menghui Ren
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Xiaoyu Zhang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yu Fu
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Run Cheng
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Yingdi Wang
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China
| | - Mingxing Miao
- National Experimental Teaching Demonstration Center of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| | - Lingpeng Zhu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu 214023, China.
| | - Tianhua Yan
- School of Basic Medical Science and Clinical Pharmacy, China Pharmaceutic University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
2
|
Fekrirad Z, Gharedaghi M, Saadatpour F, Molabashi ZA, Rezayof A, Korourian A, Soleimani M, Arefian E. Combination of microRNA and suicide gene for targeting Glioblastoma: Inducing apoptosis and significantly suppressing tumor growth in vivo. Heliyon 2024; 10:e37041. [PMID: 39286083 PMCID: PMC11403485 DOI: 10.1016/j.heliyon.2024.e37041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma (GBM), a grade IV brain tumor, presents a severe challenge in treatment and eradication due to its high genetic variability and the existence of stem-like cells with self-renewal potential. Conventional therapies fall short of preventing recurrence and fail to extend the median survival of patients significantly. However, the emergence of gene therapy, which has recently obtained significant clinical outcomes, brings hope. It has the potential to be a suitable strategy for the treatment of GBM. Notably, microRNAs (miRNAs) have been noticed as critical players in the development and progress of GBM. The combined usage of hsa-miR-34a and Cytosine Deaminase (CD) suicide gene and 5-fluorocytosine (5FC) prodrug caused cytotoxicity against U87MG Glioma cells in vitro. The apoptosis and cell cycle arrest rates were measured by flow cytometry. The lentiviral vector generated overexpression of CD/miR-34a in the presence of 5FC significantly promoted apoptosis and caused cell cycle arrest in U87MG cells. The expression level of the BCL2, SOX2, and P53 genes, target genes of hsa-miR-34a, was examined by quantitative real-time PCR. The treatment led to a substantial downregulation of Bcl2 and SOX2 genes while elevating the expression levels of Caspase7 and P53 genes compared to the scrambled control. The hsa-miR-34a hindered the proliferation of GBM cancer cells and elevated apoptosis through the P53-miR-34a-Bcl2 axis. The CD suicide gene with 5FC treatment demonstrated similar results to miR-34a in the apoptosis, cell cycle, and real-time assays. The combination of CD and miR-34a produced a synergistic effect. In vivo, anti-GBM efficacy evaluation in rats bearing intracranial C6 Glioma cells revealed a remarkable induction of apoptosis and a significant inhibition of tumor growth compared with the scrambled control. The simultaneous use of CD/miR-34a with 5FC almost entirely suppressed tumor growth in rat models. The combined application of hsa-miR-34a and CD suicide gene against GBM tumors led to significant induction of apoptosis in U87MG cells and a considerable reduction in tumor growth in vivo.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Milad Gharedaghi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Asghari Molabashi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ameneh Rezayof
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Korourian
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Xu L, Fan YH, Zhang XJ, Bai L. Unraveling the relationship between histone methylation and nonalcoholic fatty liver disease. World J Hepatol 2024; 16:703-715. [PMID: 38818286 PMCID: PMC11135277 DOI: 10.4254/wjh.v16.i5.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 05/22/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) poses a significant health challenge in modern societies due to shifts in lifestyle and dietary habits. Its complexity stems from genetic predisposition, environmental influences, and metabolic factors. Epigenetic processes govern various cellular functions such as transcription, chromatin structure, and cell division. In NAFLD, these epigenetic tendencies, especially the process of histone methylation, are intricately intertwined with fat accumulation in the liver. Histone methylation is regulated by different enzymes like methyltransferases and demethylases and influences the expression of genes related to adipogenesis. While early-stage NAFLD is reversible, its progression to severe stages becomes almost irreversible. Therefore, early detection and intervention in NAFLD are crucial, and understanding the precise role of histone methylation in the early stages of NAFLD could be vital in halting or potentially reversing the progression of this disease.
Collapse
Affiliation(s)
- Li Xu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Yu-Hong Fan
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Xiao-Jing Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan 430060, China; State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China
| | - Lan Bai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases; Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
4
|
Li L, Song Q, Zhou J, Ji Q. Controllers of histone methylation-modifying enzymes in gastrointestinal cancers. Biomed Pharmacother 2024; 174:116488. [PMID: 38520871 DOI: 10.1016/j.biopha.2024.116488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024] Open
Abstract
Gastrointestinal (GI) cancers have been considered primarily genetic malignancies, caused by a series of progressive genetic alterations. Accumulating evidence shows that histone methylation, an epigenetic modification program, plays an essential role in the different pathological stages of GI cancer progression, such as precancerous lesions, tumorigenesis, and tumor metastasis. Histone methylation-modifying enzymes, including histone methyltransferases (HMTs) and demethylases (HDMs), are the main executor of post-transcriptional modification. The abnormal expression of histone methylation-modifying enzymes characterizes GI cancers with complex pathogenesis and progression. Interactions between upstream controllers and histone methylation-modifying enzymes have recently been revealed, and have provided numerous opportunities to elucidate the pathogenesis of GI cancers in depth and clearly. Here we focus on the association between histone methylation-modifying enzymes and their controllers, aiming to provide a new perspective on the molecular research and clinical management of GI cancers.
Collapse
Affiliation(s)
- Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215007, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang 315000, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
6
|
Hatano M, Akiyama Y, Shimada S, Yagi K, Akahoshi K, Itoh M, Tanabe M, Ogawa Y, Tanaka S. Loss of KDM6B epigenetically confers resistance to lipotoxicity in nonalcoholic fatty liver disease-related HCC. Hepatol Commun 2023; 7:e0277. [PMID: 37782459 PMCID: PMC10545410 DOI: 10.1097/hc9.0000000000000277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND NAFLD caused by abnormalities in hepatic lipid metabolism is associated with an increased risk of developing HCC. The molecular mechanisms underlying the progression of NAFLD-related HCC are not fully understood. We investigated the molecular mechanism and role of KDM6B downregulation in NAFLD-related HCC after the KDM6B gene was identified using microarray analysis as commonly downregulated in mouse NAFLD-related HCC and human nonhepatitis B and nonhepatitis C viral-HCC. METHODS The 5-hydroxymethylcytosine levels of KDM6B in HCC cells were determined using glycosylated hydroxymethyl-sensitive PCR. Microarray and chromatin immunoprecipitation analyses using KDM6B-knockout (KO) cells were used to identify KDM6B target genes. Lipotoxicity was assessed using a palmitate-treated cell proliferation assay. Immunohistochemistry was used to evaluate KDM6B expression in human HCC tissues. RESULTS KDM6B expression levels in HCC cells correlated with the 5-hydroxymethylcytosine levels in the KDM6B gene body region. Gene set enrichment analysis revealed that the lipid metabolism pathway was suppressed in KDM6B-KO cells. KDM6B-KO cells acquired resistance to lipotoxicity (p < 0.01) and downregulated the expression of G0S2, an adipose triglyceride lipase/patatin like phospholipase domain containing 2 (ATGL/PNPLA2) inhibitor, through increased histone H3 lysine-27 trimethylation levels. G0S2 knockdown in KDM6B-expressed HCC cells conferred lipotoxicity resistance, whereas ATGL/PNPLA2 inhibition in the KDM6B-KO cells reduced these effects. Immunohistochemistry revealed that KDM6B expression was decreased in human NAFLD-related HCC tissues (p < 0.001), which was significantly associated with decreased G0S2 expression (p = 0.032). CONCLUSIONS KDM6B-disrupted HCC acquires resistance to lipotoxicity via ATGL/PNPLA2 activation caused by epigenetic downregulation of G0S2 expression. Reduced KDM6B and G0S2 expression levels are common in NAFLD-related HCC. Targeting the KDM6B-G0S2-ATGL/PNPLA2 pathway may be a useful therapeutic strategy for NAFLD-related HCC.
Collapse
Affiliation(s)
- Megumi Hatano
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Yagi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiichi Akahoshi
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiko Itoh
- Kanagawa Institute of Industrial Science and Technology, Kanagawa, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Liu Y, Chen M. Histone Demethylation Profiles in Nonalcoholic Fatty Liver Disease and Prognostic Values in Hepatocellular Carcinoma: A Bioinformatic Analysis. Curr Issues Mol Biol 2023; 45:3640-3657. [PMID: 37185761 PMCID: PMC10136463 DOI: 10.3390/cimb45040237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with multifactorial pathogenesis; histone demethylases (HDMs) are emerging as attractive targets. We identified HDM genes (including KDM5C, KDM6B, KDM8, KDM4A, and JMJD7) that were differentially expressed in NAFLD and normal samples by exploring gene expression profiling datasets. There was no significant difference in the expression of genes related to histone demethylation between mild and advanced NAFLD. In vitro and in vivo studies indicated that KDM6B and JMJD7 were upregulated at the mRNA level in NAFLD. We explored the expression levels and prognostic values of the identified HDM genes in hepatocellular carcinoma (HCC). KDM5C and KDM4A were upregulated in HCC compared to normal tissue, while KDM8 showed downregulation. The abnormal expression levels of these HDMs could provide prognostic values. Furthermore, KDM5C and KDM4A were associated with immune cell infiltration in HCC. HDMs were associated with cellular and metabolic processes and may be involved in the regulation of gene expression. Differentially expressed HDM genes identified in NAFLD may provide value to understanding pathogenesis and in the development of epigenetic therapeutic targets. However, on the basis of the inconsistent results of in vitro studies, future in vivo experiments combined with transcriptomic analysis are needed for further validation.
Collapse
Affiliation(s)
- Yuanbin Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430000, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430000, China
| |
Collapse
|