1
|
Yang Y, He R, Li D, Mu T, Kuang Z, Wang M. The pivotal role of ZNF384: driving the malignant behavior of serous ovarian cancer cells via the LIN28B/UBD axis. Cell Biol Toxicol 2024; 40:100. [PMID: 39562372 PMCID: PMC11576860 DOI: 10.1007/s10565-024-09938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/16/2024] [Indexed: 11/21/2024]
Abstract
Zinc finger protein 384 (ZNF384) is a highly conserved transcribed gene associated with the development of multiple tumors, however, its role and mechanism in serous ovarian cancer (SOC) are unknown. We first confirmed that ZNF384 was abnormally highly expressed in SOC tissues by bioinformatics analysis and immunohistochemistry. We further used lentivirus packaging and transfection techniques to construct ZNF384 overexpression or knockdown cell lines, and through a series of cell function experiments, gradually verified that ZNF384 promoted a series of malignant behaviors of SOC cell proliferation, migration, and invasion. By establishing a xenotransplantation model in nude mice, it was confirmed that ZNF384 promoted the progress of SOC in vivo. Mechanistically, Overexpression of ZNF384 enhanced the transcriptional activity of Lin-28 homolog B (LIN28B), which promoted the malignant behavior of SOC cells. In addition, LIN28B could regulate the expression of the downstream factor ubiquitin D (UBD) in SOC cells, further promoting the development of SOC. This study shows that ZNF384 aggravates the malignant behavior of SOC cells through the LIN28B/UBD axis, which may be used as a diagnostic biomarker for patients with SOC.
Collapse
Affiliation(s)
- Ye Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Runze He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Dongxiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tianli Mu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ziteng Kuang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China.
| |
Collapse
|
2
|
Wang J, Zhu X, Yu Y, Ge J, Chen W, Xu W, Zhou W. CBX4/miR-190 regulatory loop inhibits lung cancer metastasis. Thorac Cancer 2024; 15:1889-1896. [PMID: 39098997 PMCID: PMC11462972 DOI: 10.1111/1759-7714.15415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Lung cancer is one of the major threats to human life worldwide. MiR-190 has been found to perform essential roles in multiple cancer progression; however, there have been no studies focused on its function and underlying regulatory mechanism in lung cancer. METHOD The miR-190 expression was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The cell functional experiments, including cell counting kit-8 (CCK-8), colony formation and transwell assay were conducted in vitro, as well as animal experiments performed in vivo. The regulation and potential binding sites of CBX4 on miR-190 were predicted by TCGA data set and JASPAR website and verified by ChIP assay and dual-luciferase reporter assay. The prospects binding site of miR-190-3p on CBX4 3'UTR region was predicted by StarBase and verified by dual-luciferase reporter assay. RESULTS MiR-190 was decreased in lung cancer cells. The overexpression of miR-190 had no effects on cell proliferation, but significantly inhibited cancer metastasis both in vitro and in vivo. Moreover, miR-190 expression could be transcriptionally inhibited by CBX4, and CBX4 was the direct target of miR-190-3p. CONCLUSION MiR-190 served as a cancer metastasis inhibitor in lung cancer and formed a regulatory loop with CBX4. These findings provided emerging insights into therapeutic targets and strategies for metastatic lung cancer.
Collapse
Affiliation(s)
- Jian Wang
- Department of Molecular Imaging and Nuclear MedicineTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjin Tumor HospitalTianjinChina
- Tianjin's Clinical Research Center for CancerTianjin Tumor HospitalTianjinChina
| | - Xiang Zhu
- Department of Molecular Imaging and Nuclear MedicineTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjin Tumor HospitalTianjinChina
- Tianjin's Clinical Research Center for CancerTianjin Tumor HospitalTianjinChina
| | - Yue Yu
- Key Laboratory of Cancer Prevention and TherapyTianjin Tumor HospitalTianjinChina
- Tianjin's Clinical Research Center for CancerTianjin Tumor HospitalTianjinChina
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
| | - Jie Ge
- Key Laboratory of Cancer Prevention and TherapyTianjin Tumor HospitalTianjinChina
- Tianjin's Clinical Research Center for CancerTianjin Tumor HospitalTianjinChina
- The First Department of Breast CancerTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
| | - Wei Chen
- Department of Molecular Imaging and Nuclear MedicineTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjin Tumor HospitalTianjinChina
- Tianjin's Clinical Research Center for CancerTianjin Tumor HospitalTianjinChina
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear MedicineTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for CancerTianjinChina
- Key Laboratory of Cancer Prevention and TherapyTianjin Tumor HospitalTianjinChina
| | - Wen Zhou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of Pharmacy, Tianjin Medical UniversityTianjinChina
| |
Collapse
|
3
|
Yan T, Hu P, Lv S, Ye M, Wu M, Fang H, Xiao B. ZNF384 transcriptionally activated MGST1 to confer TMZ resistance of glioma cells by negatively regulating ferroptosis. Cancer Chemother Pharmacol 2024; 94:323-336. [PMID: 38824270 DOI: 10.1007/s00280-024-04681-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Drug resistance is one of the major reasons of the poor prognosis and recurs frequently in glioma. Ferroptosis is considered to be a new therapeutic strategy for glioma. METHODS Microsomal glutathione S-transferase 1 (MGST1) expression in glioma samples was ensured through GAPIA database, qRT-PCR, western blotting assay and immunohistochemistry. The interaction between zinc finger protein 384 (ZNF384) and MGST1 promoter was analyzed through UCSC and JASPAR databases and further verified by ChIP and luciferase reporter assay. Cell viability and IC50 value of temozolomide (TMZ) was measured by CCK-8 assay. The production of MDA, GSH and ROS and the level of Fe2+ were determined using the corresponding kit. RESULTS MGST1 expression was increased in clinical glioma tissues and glioma cells. MGST1 expression was increased but ferroptosis was suppressed in TMZ-resistant cells when contrasted to parent cells. MGST1 silencing downregulated IC50 value of TMZ and cell viability but facilitated ferroptosis in TMZ-resistant cells and parent glioma cells. Moreover, our data indicated that ZNF384 interacted with MGST1 promoter and facilitated MGST1 expression. ZNF384 was also increased expression in TMZ-resistant cells, and showed a positive correlation with MGST1 expression in clinical level. ZNF384 decreasing enhanced the sensitivity of resistant cells to TMZ, while the effect of ZNF384 could be reversed by overexpression of MGST1. CONCLUSION MGST1 transcription is regulated by transcription factor ZNF384 in TMZ-resistant cells. ZNF384 confers the resistance of glioma cells to TMZ through inhibition of ferroptosis by positively regulating MGST1 expression. The current study may provide some new understand to the mechanism of TMZ resistance in glioma.
Collapse
Affiliation(s)
- Tengfeng Yan
- Department of Neurosurgery the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Ping Hu
- Department of Neurosurgery the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Shigang Lv
- Department of Neurosurgery the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Minhua Ye
- Department of Neurosurgery the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Miaojing Wu
- Department of Neurosurgery the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Hua Fang
- Department of Neurosurgery the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi Province, 330006, P.R. China
| | - Bing Xiao
- Department of Neurosurgery the 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Donghu District, Nanchang, Jiangxi Province, 330006, P.R. China.
| |
Collapse
|
4
|
Yamada C, Okada K, Odaira K, Tokoro M, Iwamoto E, Sanada M, Noura M, Okamoto S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. RGS1 and CREB5 are direct and common transcriptional targets of ZNF384-fusion proteins. Cancer Med 2024; 13:e7471. [PMID: 39015025 PMCID: PMC11252495 DOI: 10.1002/cam4.7471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND ZNF384-fusion (Z-fusion) genes were recently identified in B-cell acute lymphoblastic leukemia (B-ALL) and are frequent in Japanese adult patients. The frequency is about 20% in those with Philadelphia chromosome-negative B-ALL. ZNF384 is a transcription factor and Z-fusion proteins have increased transcriptional activity; however, the detailed mechanisms of leukemogenesis of Z-fusion proteins have yet to be clarified. METHODS We established three transfectants of cell lines expressing different types of Z-fusion proteins, and analyzed their gene expression profile (GEP) by RNA-seq. We also analyzed the GEP of clinical ALL samples using our previous RNA-seq data of 323 Japanese ALL patients. We selected upregulated genes in both Z-fusion gene-expressing transfectants and Z-fusion gene-positive ALL samples, and investigated the binding of Z-fusion proteins to regulatory regions of the candidate genes by ChIP-qPCR. RESULTS We selected six commonly upregulated genes. After the investigation by ChIP-qPCR, we finally identified CREB5 and RGS1 as direct and common target genes. RGS1 is an inhibitor of CXCL12-CXCR4 signaling that is required for the homing of hematopoietic progenitor cells to the bone marrow microenvironment and development of B cells. Consistent with this, Z-fusion gene transfectants showed impaired migration toward CXCL12. CONCLUSIONS We identified CREB5 and RGS1 as direct and common transcriptional targets of Z-fusion proteins. The present results provide novel insight into the aberrant transcriptional regulation by Z-fusion proteins.
Collapse
Affiliation(s)
- Chiharu Yamada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Kentaro Okada
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Koya Odaira
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Mahiru Tokoro
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Eisuke Iwamoto
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Masashi Sanada
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Syuichi Okamoto
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research CenterNational Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
5
|
Yin DP, Zhang H, Teng H, Zhang D, Chen P, Xie L, Liu JS. Overexpressed Gαi1 exerts pro-tumorigenic activity in nasopharyngeal carcinoma. Cell Death Dis 2023; 14:792. [PMID: 38049415 PMCID: PMC10696052 DOI: 10.1038/s41419-023-06308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/04/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023]
Abstract
The current study tested the expression and potential functions of Gαi1 in nasopharyngeal carcinoma (NPC). The Cancer Genome Atlas (TCGA) database results demonstrate that Gαi1 transcripts' number in NPC tissues is significantly higher than that in the normal nasal epithelial tissues. Its overexpression correlates with poor survival in certain NPC patients. Moreover, Gαi1 is significantly upregulated in NPC tissues of local primary patients and in different primary human NPC cells. Whereas its expression is relatively low in cancer-surrounding normal tissues and in primary nasal epithelial cells. Genetic silencing (via shRNA strategy) or knockout (via CRISPR-sgRNA method) of Gαi1 substantially suppressed viability, proliferation, cell cycle progression, and migration in primary NPC cells, causing significant caspase-apoptosis activation. Contrarily, ectopic Gαi1 expression exerted pro-tumorigenic activity and strengthened cell proliferation and migration in primary NPC cells. Gαi1 is important for Akt-mTOR activation in NPC cells. Akt-S6K phosphorylation was downregulated after Gαi1 shRNA or KO in primary NPC cells, but strengthened following Gαi1 overexpression. In Gαi1-silenced primary NPC cells, a S473D constitutively-active mutant Akt1 (caAkt1) restored Akt-S6K phosphorylation and ameliorated Gαi1 shRNA-induced proliferation inhibition, migration reduction and apoptosis. Bioinformatics analyses proposed zinc finger protein 384 (ZNF384) as a potential transcription factor of Gαi1. In primary NPC cells, ZNF384 shRNA or knockout (via CRISPR-sgRNA method) decreased Gαi1 mRNA and protein expression, whereas ZNF384 overexpression upregulated it. Importantly, there was an increased binding between ZNF384 protein and the Gαi1 promoter in human NPC tissues and different NPC cells. In vivo studies showed that intratumoral injection of Gαi1-shRNA-expressing adeno-associated virus (AAV) impeded subcutaneous NPC xenograft growth in nude mice. Gαi1 downregulation, Akt-mTOR inactivation, and apoptosis induction were detected in Gαi1-silenced NPC xenograft tissues. Gαi1 KO also effectively inhibited the growth of NPC xenografts in nude mice. Together, overexpressed Gαi1 exerts pro-tumorigenic activity in NPC possibly by promoting Akt-mTOR activation.
Collapse
Affiliation(s)
- De-Pei Yin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Huanle Zhang
- Department of Radiotherapy, Suzhou Ninth People's Hospital, Suzhou, China
| | - Hua Teng
- Department of Otorhinolaryngology Head and Neck Surgery, Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Dan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peipei Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Lixiao Xie
- Department of Otorhinolaryngology Head and Neck Surgery, Children's Hospital of Soochow University, Suzhou, China.
| | - Ji-Sheng Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Xu F, Yang X, Xue L, Zhang P, Chong T, Sun Y. Clinical significance and biofunction of ZNF384 in renal cell carcinoma discovered by data mining and experimentation. Hum Cell 2023; 36:1214-1217. [PMID: 36882592 DOI: 10.1007/s13577-023-00891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Affiliation(s)
- Fangshi Xu
- Department of Urology, Shaanxi Provincial People's Hospital, No. 256, Friendship West Road, Xi'an, 710068, Shaanxi, China
| | - XiaoJie Yang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710004, Shaanxi, China
| | - Li Xue
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710004, Shaanxi, China
| | - Peng Zhang
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710004, Shaanxi, China
| | - Tie Chong
- Department of Urology, Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, West Five Road, Xi'an, 710004, Shaanxi, China
| | - Yi Sun
- Department of Urology, Shaanxi Provincial People's Hospital, No. 256, Friendship West Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|