1
|
Zhang P, Liu X, Liu Y, Zhu H, Zheng C, Ling Q, Yan F, He Q, Zhu H, Yuan T, Yang B. VCP Promotes Cholangiocarcinoma Development by Mediating BAP1 Ubiquitination-Dependent Degradation. Cancer Sci 2025. [PMID: 40122668 DOI: 10.1111/cas.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025] Open
Abstract
Cholangiocarcinoma (CCA), recognized for its high malignancy, has been an enormous challenge due to lacking effective treatment therapy over the past decades. Recently, the targeted therapies, such as Pemigatinib and Ivosidenib, have provided new treatment options for patients carrying fibroblast growth factor receptor (FGFR) and isocitrate dehydrogenase 1/2 (IDH1/2) mutations, but only ~30% of patients harbor these mutants; it is urgent to explore novel targets and therapeutic therapies. The frequent downregulation of BAP1 has been observed in CCA, and the low expression of BAP1 is closely related to the poor prognosis of CCA. However, there are no effective interventions to re-activate BAP1 protein; blocking its degradation may provide a feasible strategy for BAP1-downregulation CCA treatment. In this study, we demonstrated the tumor-suppressive roles of BAP1 in CCA and identified VCP functions as the key upstream regulator mediated by BAP1 protein homeostasis. Mechanistically, VCP binds to BAP1 and promotes the latter's ubiquitination degradation via the ubiquitin-proteasome pathway, thus promoting cell proliferation and inhibiting cell apoptosis. Moreover, we found that VCP inhibitors inhibited CCA cell growth and promoted cell apoptosis by blocking BAP1 ubiquitination degradation. Collectively, our findings not only provided a novel mechanism underlying the aberrant low expression of BAP1 in CCA but also verified the anti-tumor effect of VCP inhibitors in CCA, offering a novel therapeutic target for CCA treatment.
Collapse
Affiliation(s)
- Peiying Zhang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiangning Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yue Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hongdao Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Churun Zheng
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qi Ling
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wang L, Xiao J, Zhang B, Hou A. Epigenetic modifications in the development of bronchopulmonary dysplasia: a review. Pediatr Res 2024; 96:632-642. [PMID: 38570557 DOI: 10.1038/s41390-024-03167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/25/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
While perinatal medicine advancements have bolstered survival outcomes for premature infants, bronchopulmonary dysplasia (BPD) continues to threaten their long-term health. Gene-environment interactions, mediated by epigenetic modifications such as DNA methylation, histone modification, and non-coding RNA regulation, take center stage in BPD pathogenesis. Recent discoveries link methylation variations across biological pathways with BPD. Also, the potential reversibility of histone modifications fuels new treatment avenues. The review also highlights the promise of utilizing mesenchymal stem cells and their exosomes as BPD therapies, given their ability to modulate non-coding RNA, opening novel research and intervention possibilities. IMPACT: The complexity and universality of epigenetic modifications in the occurrence and development of bronchopulmonary dysplasia were thoroughly discussed. Both molecular and cellular mechanisms contribute to the diverse nature of epigenetic changes, suggesting the need for deeper biochemical techniques to explore these molecular alterations. The utilization of innovative cell-specific drug delivery methods like exosomes and extracellular vesicles holds promise in achieving precise epigenetic regulation.
Collapse
Affiliation(s)
- Lichuan Wang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Jun Xiao
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Bohan Zhang
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China
| | - Ana Hou
- Department of Pediatrics, Sheng Jing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Bredeck G, Dobner J, Stahlmecke B, Fomba KW, Herrmann H, Rossi A, Schins RPF. Saharan dust induces NLRP3-dependent inflammatory cytokines in an alveolar air-liquid interface co-culture model. Part Fibre Toxicol 2023; 20:39. [PMID: 37864207 PMCID: PMC10588053 DOI: 10.1186/s12989-023-00550-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epidemiological studies have related desert dust events to increased respiratory morbidity and mortality. Although the Sahara is the largest source of desert dust, Saharan dust (SD) has been barely examined in toxicological studies. Here, we aimed to assess the NLRP3 inflammasome-caspase-1-pathway-dependent pro-inflammatory potency of SD in comparison to crystalline silica (DQ12 quartz) in an advanced air-liquid interface (ALI) co-culture model. Therefore, we exposed ALI co-cultures of alveolar epithelial A549 cells and macrophage-like differentiated THP-1 cells to 10, 21, and 31 µg/cm² SD and DQ12 for 24 h using a Vitrocell Cloud system. Additionally, we exposed ALI co-cultures containing caspase (CASP)1-/- and NLRP3-/- THP-1 cells to SD. RESULTS Characterization of nebulized DQ12 and SD revealed that over 90% of agglomerates of both dusts were smaller than 2.5 μm. Characterization of the ALI co-culture model revealed that it produced surfactant protein C and that THP-1 cells remained viable at the ALI. Moreover, wild type, CASP1-/-, and NLRP3-/- THP-1 cells had comparable levels of the surface receptors cluster of differentiation 14 (CD14), toll-like receptor 2 (TLR2), and TLR4. Exposing ALI co-cultures to non-cytotoxic doses of DQ12 and SD did not induce oxidative stress marker gene expression. SD but not DQ12 upregulated gene expressions of interleukin 1 Beta (IL1B), IL6, and IL8 as well as releases of IL-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα). Exposing wild type, CASP1-/-, and NLRP3-/- co-cultures to SD induced IL1B gene expression in all co-cultures whereas IL-1β release was only induced in wild type co-cultures. In CASP1-/- and NLRP3-/- co-cultures, IL-6, IL-8, and TNFα releases were also reduced. CONCLUSIONS Since surfactants can decrease the toxicity of poorly soluble particles, the higher potency of SD than DQ12 in this surfactant-producing ALI model emphasizes the importance of readily soluble SD components such as microbial compounds. The higher potency of SD than DQ12 also renders SD a potential alternative particulate positive control for studies addressing acute inflammatory effects. The high pro-inflammatory potency depending on NLRP3, CASP-1, and IL-1β suggests that SD causes acute lung injury which may explain desert dust event-related increased respiratory morbidity and mortality.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany.
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Burkhard Stahlmecke
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), 47229, Duisburg, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| |
Collapse
|
4
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Maracaja L, Khanna AK, Murphy SV, Maracaja DL, Lane MR, Khoury O, Tan J, Damuka N, Crawford FF, Bottoms JA, Miller MD, Kaczka DW, Jordam JE, Sai KKS. Positron Emission Tomography-Computed Tomography Imaging of Selective Lobar Delivery of Stem Cells in Ex Vivo Lung Model of Mechanical Ventilation. J Aerosol Med Pulm Drug Deliv 2023; 36:20-26. [PMID: 36594924 PMCID: PMC9942179 DOI: 10.1089/jamp.2022.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Introduction: The delivery of cell therapies may be an important frontier to treat different respiratory diseases in the near future. However, the cell size, delivery conditions, cell viability, and effect in the pulmonary function are critical factors. We performed a proof-of-concept experiment using ex vivo lungs and novel subglottic airway device that allows for selective lobar isolation and administration of drugs and biologics in liquid solution deep into the lung tissues, while simultaneously ventilating the rest of the lung lobes. Methods: We used radiolabeled cells and positron emission tomography-computed tomography (PET-CT) imaging to demonstrate the feasibility of high-yield cell delivery to a specifically targeted lobe. This study proposes an alternative delivery method of live cells labeled with radioactive isotope into the lung parenchyma and tracks the cell delivery using PET-CT imaging. The technique combines selective lobar isolation and lobar infusion to carry large particles distal to the trachea, subtending bronchial segments and reaching alveoli in targeted regions. Results: The solution with cells and carrier achieved a complete and homogeneous lobar distribution. An increase in tissue density was shown on the computed tomography (CT) scan, and the PET-CT imaging demonstrated retention of the activity at central, peripheral lung parenchyma, and pleural surface. The increase in CT density and metabolic activity of the isotope was restricted to the desired lobe only without leak to other lobes. Conclusion: The selective lobe delivery is targeted and imaging-guided by bronchoscopy and CT to a specific diseased lobe during mechanical ventilation. The feasibility of high-yield cell delivery demonstrated in this study will lead to the development of potential novel therapies that contribute to lung health.
Collapse
Affiliation(s)
- Luiz Maracaja
- Department of Anesthesiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Address correspondence to: Luiz Maracaja, MD, Wake Forest Baptist Medical Center, Winston-Salem, NC 27157-0001, USA
| | - Ashish K. Khanna
- Department of Anesthesiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA.,Outcomes Research Consortium, Cleveland, Ohio, USA
| | - Sean V. Murphy
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Danielle L.V. Maracaja
- Department of Pathology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Magan R. Lane
- Department of Cardiothoracic Surgery, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Oula Khoury
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Josh Tan
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Naresh Damuka
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Freda F. Crawford
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Joseph A. Bottoms
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Mack D. Miller
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David W. Kaczka
- Department of Anesthesia, The University of Iowa Hospital and Clinics, The University of Iowa, Iowa City, Iowa, USA
| | - James Eric Jordam
- Department of Cardiothoracic Surgery, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Kiran Kumar Solingapuram Sai
- Department of Radiology, Wake Forest Baptist Medical Center–Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
6
|
Wan S, Chen P, Gu M, Liu J, Zhou Q, Zhang F, Lu Y, Li L, Wang X. Fetal Lung-Derived Exosomes in Term Labor Amniotic Fluid Induce Amniotic Membrane Senescence. Front Cell Dev Biol 2022; 10:889861. [PMID: 35859898 PMCID: PMC9289145 DOI: 10.3389/fcell.2022.889861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanism of parturition is still unclear. Evidence has shown that delivery is associated with cellular senescence of the amniotic membrane. We isolated fetal lung-associated exosomes from the amniotic fluid from term labor (TL-exos) and verified that the exosomes can cause primary human amniotic epithelial cell (hAEC) senescence and apoptosis and can release higher levels of senescence-associated secretory phenotype (SASP)-related molecules and proinflammatory damage-associated molecular patterns (DAMPs) than exosomes isolated from the amniotic fluid from term not in labor (TNIL-exos). The human lung carcinoma cell lines (A549) can be used as an alternative to alveolar type 2 epithelial cells producing pulmonary surfactant. Therefore, we isolated A549 cell-derived exosomes (A549-exos) and found that they can trigger hAEC to undergo the same aging process. Finally, the animal experiments suggested that A549-exos induced vaginal bleeding and preterm labor in pregnant mice. Therefore, we conclude that exosomes derived from fetal lungs in term labor amniotic fluid induce amniotic membrane senescence, which may provide new insight into the mechanism of delivery.
Collapse
Affiliation(s)
- Shuting Wan
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Pengzheng Chen
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Mengqi Gu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Jing Liu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Qian Zhou
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
| | - Fengyuan Zhang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Yuan Lu
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
- *Correspondence: Lei Li, ; Yuan Lu, ; Xietong Wang,
| | - Lei Li
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China
- *Correspondence: Lei Li, ; Yuan Lu, ; Xietong Wang,
| | - Xietong Wang
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong University, Jinan, China
- Department of Obstetrics and Gynaecology, Shandong Provincial Hospital Affiliated with Shandong First Medical University, Jinan, China
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China
- Department of Obstetrics and Gynaecology, Maternal and Child Health Care of Shandong Province, Jinan, China
- The Laboratory of Placenta-Related Diseases, Key Laboratory of Birth Regulation and Control Technology of the National Health and Family Planning Commission of China, Jinan, China
- *Correspondence: Lei Li, ; Yuan Lu, ; Xietong Wang,
| |
Collapse
|
7
|
Wang H, Zhu Y, Cao L, Guo Z, Sun K, Qiu W, Fan H. circARL15 Plays a Critical Role in Intervertebral Disc Degeneration by Modulating miR-431-5p/DISC1. Front Genet 2021; 12:669598. [PMID: 34234811 PMCID: PMC8255806 DOI: 10.3389/fgene.2021.669598] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022] Open
Abstract
Background Intervertebral disk degeneration (IDD) is a serious public health problem associated with genetic and environmental factors. However, the pathogenic factors involved and the pathological mechanism of this disease still remain enigmatic. Methods The associated microarray was downloaded and further analyzed using statistical software R. The competing endogenous RNA (ceRNA) co-expression network was constructed to measure the meaningful correlated expression of differentially expressed genes. We further measured the expression of circARL15/miR-431-5p/DISC1 in IDD tissues. Cell proliferation and apoptosis were detected in NP cells transfected with a circARL15 overexpression plasmid and miR-431-5p mimics. The expression of DISC1 was detected by immunohistochemistry and Western blot analysis. Results Within the ceRNA network, circARL15 is the most differentially expressed circular RNA. circARL15 was down-regulated in IDD and was negatively correlated with miR-431-5p and positively associated with DISC1. miR-431-5p was found to bind directly to circARL15 and DISC1. circARL15 inhibited nucleus pulposus cell apoptosis but promoted nucleus pulposus cell proliferation by targeting the miR-431-5p/DISC1 signaling pathway. Conclusion circARL15/miR-431-5p/DISC1 is involved in the pathogenesis of IDD, which might be helpful in determining the diagnostic biomarkers and providing potential therapeutic targets for patients with IDD.
Collapse
Affiliation(s)
- Hanbang Wang
- Department of Orthopaedics, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Yakun Zhu
- Department of Orthopaedics, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Le Cao
- Department of Orthopaedics, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Ziming Guo
- Department of Orthopaedics, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Kai Sun
- Department of Orthopaedics, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Wangbao Qiu
- Department of Orthopaedics, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Haitao Fan
- Department of Orthopaedics, Fuyang Hospital of Anhui Medical University, Fuyang, China
| |
Collapse
|
8
|
Influence of Culture Substrates on Morphology and Function of Pulmonary Alveolar Cells In Vitro. Biomolecules 2021; 11:biom11050675. [PMID: 33946440 PMCID: PMC8147120 DOI: 10.3390/biom11050675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Cell's microenvironment has been shown to exert influence on cell behavior. In particular, matrix-cell interactions strongly impact cell morphology and function. The purpose of this study was to analyze the influence of different culture substrate materials on phenotype and functional properties of lung epithelial adenocarcinoma (A549) cells. A549 cells were seeded onto two different biocompatible, commercially available substrates: a polyester coverslip (Thermanox™ Coverslips), that was used as cell culture plate control, and a polydimethylsiloxane membrane (PDMS, Elastosil® Film) investigated in this study as alternative material for A549 cells culture. The two substrates influenced cell morphology and the actin cytoskeleton organization. Further, the Yes-associated protein (YAP) and its transcriptional coactivator PDZ-binding motif (TAZ) were translocated to the nucleus in A549 cells cultured on polyester substrate, yet it remained mostly cytosolic in cells on PDMS substrate. By SEM analysis, we observed that cells grown on Elastosil® Film maintained an alveolar Type II cell morphology. Immunofluorescence staining for surfactant-C revealing a high expression of surfactant-C in cells cultured on Elastosil® Film, but not in cells cultured on Thermanox™ Coverslips. A549 cells grown onto Elastosil® Film exhibited morphology and functionality that suggest retainment of alveolar epithelial Type II phenotype, while A549 cells grown onto conventional plastic substrates acquired an alveolar Type I phenotype.
Collapse
|
9
|
Fu Q, Li L, Wang B, Wu J, Li H, Han Y, Xiang D, Chen Y, Zhu J. CircADAMTS6/miR-431-5p axis regulate interleukin-1β induced chondrocyte apoptosis. J Gene Med 2021; 23:e3304. [PMID: 33305412 DOI: 10.1002/jgm.3304] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Growing evidence suggests that circular RNAs (circRNAs) are involved in the development of osteoarthritis (OA). The present study aimed to explore the CircADAMTS6/miR-431-5p axis with respect to regulating interleukin-1β (IL-1β) induced chondrocyte apoptosis. METHODS We first evaluated the differentially expressed circRNAs between normal chondrocytes and interleukin (IL)-1β-stimulated chondrocytes. Then, bioinformatic analysis was performed to identify the role and function of circADAMTS6. Small interfering RNA-expressing or overexpressing circADAMTS6 lentiviral vectors were used for transduction of chondrocytes. Annexin-V-fluorescein isothiocyanate (FITC) double staining was performed to measure the apoptotic rate of the chondrocytes in each group. Finally, a dual luciferase reporter assay was performed to identify the target relationship between circADAMTS6 and miR-431-5p. RESULTS After treatment with IL-1β, circADAMTS6 was down-regulated compared to the normal chondrocyte group. The overexpression of circADAMTS6 inhibited apoptosis in human chondrocytes, as indicated by annexin-V-FITC double staining. However, overexpression of miR-431-5p had the opposite effect. A dual luciferase reporter assay indicated that circADAMTS6 could directly binding with miR-431-5p. CONCLUSIONS Our findings demonstrate that the circADAMTS6/miR-431-5p axis comprises a new target for OA. Bioinformatic analysis suggested that circADAMTS6 acted as a sponge of miR-431-5p.
Collapse
Affiliation(s)
- Qiwei Fu
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Lexiang Li
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Wang
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Wu
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haobo Li
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yaguang Han
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dong Xiang
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Chen
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jun Zhu
- Joint Surgery and Sports Medicine Department, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Ganguly K, Kishore U, Madan T. Interplay between C-type lectin receptors and microRNAs in cellular homeostasis and immune response. FEBS J 2020; 288:4210-4229. [PMID: 33085815 DOI: 10.1111/febs.15603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
C-type lectin receptors (CLRs) belong to the family of pattern recognition receptors (PRRs). They have a critical role to play in the regulation of a range of physiological functions including development, respiration, angiogenesis, inflammation, and immunity. CLRs can recognize distinct and conserved exogenous pathogen-associated as well as endogenous damage-associated molecular patterns. These interactions set off downstream signaling cascades, leading to the production of inflammatory mediators, activation of effector immune cells as well as regulation of the developmental and physiological homeostasis. CLR signaling must be tightly controlled to circumvent the excessive inflammatory burden and to maintain the cellular homeostasis. Recently, MicroRNAs (miRNAs) have been shown to be important regulators of expression of CLRs and their downstream signaling. The delicate balance between miRNAs and CLRs seems crucial in almost all aspects of multicellular life. Any dysregulations in the miRNA-CLR axes may lead to tumorigenesis or inflammatory diseases. Here, we present an overview of the current understanding of the central role of miRNAs in the regulation of CLR expression, profoundly impacting upon homeostasis and immunity, and thus, development of therapeutics against immune disorders.
Collapse
Affiliation(s)
- Kasturi Ganguly
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Taruna Madan
- Department of Innate Immunity, ICMR-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
11
|
Jiang ZF, Zhang L, Shen J. MicroRNA: Potential biomarker and target of therapy in acute lung injury. Hum Exp Toxicol 2020; 39:1429-1442. [PMID: 32495695 DOI: 10.1177/0960327120926254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs stretching over 18-22 nucleotides and considered to be modifiers of many respiratory diseases. They are highly evolutionary conserved and have been implicated in several biological processes, including cell proliferation, apoptosis, differentiation, among others. Acute lung injury (ALI) is a fatal disease commonly caused by direct or indirect injury factors and has a high mortality rate in intensive care unit. Changes in expression of several types of miRNAs have been reported in patients with ALI. Some miRNAs suppress cellular injury and accelerate the recovery of ALI by targeting specific molecules and decreasing excessive immune response. For this reason, miRNAs are proposed as potential biomarkers for ALI and as therapeutic targets for this disease. This review summarizes current evidence supporting the role of miRNAs in ALI.
Collapse
Affiliation(s)
- Z-F Jiang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - L Zhang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - J Shen
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
12
|
Shen YQ, Bao ZD, Pan JJ, Mao XN, Cheng R, Zhou XG, Zhou XY, Yang Y. MicroRNA‑431 inhibits the expression of surfactant proteins through the BMP4/activin/TGF‑β signaling pathway by targeting SMAD4. Int J Mol Med 2020; 45:1571-1582. [PMID: 32323744 DOI: 10.3892/ijmm.2020.4511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/13/2020] [Indexed: 11/06/2022] Open
Abstract
The synthesis and secretion of surfactant proteins (SPs) is an important sign of lung maturation. Furthermore, the morbidity of lung developmental diseases, including respiratory distress syndrome and bronchopulmonary dysplasia which are mainly caused by immature lung development and lack of SPs, is increasing. As is well known, multiple microRNAs (miRs/miRNAs) are able to influence lung development via numerous different signaling pathways. However, few studies examine the association between the miRNAs and lung developmental diseases. A previous study has demonstrated that miR‑431 was significantly (F=33.49; P<0.001) downregulated in the lung tissues of Sprague‑Dawley rats at 3 time points, embryonic day 19, embryonic day 21 and postnatal day 3. The present study reported that the regulation of miR‑431 may influence the expression of SPs. Thus, the further potential mechanisms of miR‑431 in negatively regulating lung development were examined in the present study. Stable A549 cell lines overexpressing or knocking down SMAD family member 4 (SMAD4) transfected with miR‑431 overexpressed or knocked down, and their control groups were established. Subsequently, the expression of bone morphogenetic protein 4 (BMP4), SMAD4 and SPs (SP‑A, SP‑B and SP‑C) at the RNA and protein levels were validated respectively by reverse transcription quantitative PCR and western blotting. miR‑431 exhibited a decreased expression, while BMP4 and SPs exhibited increased expression at the mRNA and protein levels in the SMAD4 knockdown group. Meanwhile, the expression of SPs were reduced in the SMAD4‑knockdown group via overexpressing miR‑431 and increased in the SMAD4‑overexpression group via inhibiting miR‑431. The present results indicate that SMAD4 negatively regulates the expression of SPs, and that miR‑431 negatively regulates the expression of SPs through inhibiting the BMP4/activin/transforming growth factor‑β signaling pathway by targeting SMAD4.
Collapse
Affiliation(s)
- Yan-Qing Shen
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Zhi-Dan Bao
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing-Jing Pan
- Department of Pediatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Xiao-Nan Mao
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Rui Cheng
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Guang Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Yu Zhou
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yang Yang
- Department of Neonates, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
13
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
14
|
Flayer CH, Ge MQ, Hwang JW, Kokalari B, Redai IG, Jiang Z, Haczku A. Ozone Inhalation Attenuated the Effects of Budesonide on Aspergillus fumigatus-Induced Airway Inflammation and Hyperreactivity in Mice. Front Immunol 2019; 10:2173. [PMID: 31572383 PMCID: PMC6753328 DOI: 10.3389/fimmu.2019.02173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022] Open
Abstract
Inhaled glucocorticoids form the mainstay of asthma treatment because of their anti-inflammatory effects in the lung. Exposure to the air pollutant ozone (O3) exacerbates chronic airways disease. We and others showed that presence of the epithelial-derived surfactant protein-D (SP-D) is important in immunoprotection against inflammatory changes including those induced by O3 inhalation in the airways. SP-D synthesis requires glucocorticoids. We hypothesized here that O3 exposure impairs glucocorticoid responsiveness (including SP-D production) in allergic airway inflammation. The effects of O3 inhalation and glucocorticoid treatment were studied in a mouse model of allergic asthma induced by sensitization and challenge with Aspergillus fumigatus (Af) in vivo. The role of O3 and glucocorticoids in regulation of SP-D expression was investigated in A549 and primary human type II alveolar epithelial cells in vitro. Budesonide inhibited airway hyperreactivity, eosinophil counts in the lung and bronchoalveolar lavage (BAL) and CCL11, IL-13, and IL-23p19 release in the BAL of mice sensitized and challenged with Af (p < 0.05). The inhibitory effects of budesonide were attenuated on inflammatory changes and were completely abolished on airway hyperreactivity after O3 exposure of mice sensitized and challenged with Af. O3 stimulated release of pro-neutrophilic mediators including CCL20 and IL-6 into the airways and impaired the inhibitory effects of budesonide on CCL11, IL-13 and IL-23. O3 also prevented budesonide-induced release of the immunoprotective lung collectin SP-D into the airways of allergen-challenged mice. O3 had a bi-phasic direct effect with early (<12 h) inhibition and late (>48 h) activation of SP-D mRNA (sftpd) in vitro. Dexamethasone and budesonide induced sftpd transcription and translation in human type II alveolar epithelial cells in a glucocorticoid receptor and STAT3 (an IL-6 responsive transcription factor) dependent manner. Our study indicates that O3 exposure counteracts the effects of budesonide on airway inflammation, airway hyperreactivity, and SP-D production. We speculate that impairment of SP-D expression may contribute to the acute O3-induced airway inflammation. Asthmatics exposed to high ambient O3 levels may become less responsive to glucocorticoid treatment during acute exacerbations.
Collapse
Affiliation(s)
- Cameron H Flayer
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States
| | - Moyar Q Ge
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jin W Hwang
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Blerina Kokalari
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Imre G Redai
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhilong Jiang
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Angela Haczku
- Department of Internal Medicine, University of California, Davis, Davis, CA, United States.,Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|