1
|
Cao C, Zhang H, Zhang T, Nie C. Circular RNA NINL accelerates the malignant progression of cervical cancer. Discov Oncol 2024; 15:766. [PMID: 39692846 DOI: 10.1007/s12672-024-01588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/13/2024] [Indexed: 12/19/2024] Open
Abstract
OBJECTIVE The study's aim was to explore a novel miRNA/mRNA network mediated by circNINL in cervical cancer (CC). METHODS Tumor tissue specimens and normal tissue specimens of 86 CC patients were collected. CircNINL, miR-2467-3p, and specificity protein 1 (SP1) expression levels in tissues were detected. In Hela cells, transfection was implemented to determine whether CircNINL, miR-2467-3p and SP1 regulated cellular progression. The interaction between circNINL, miR-2467-3p, and SP1 was explored. RESULTS CircNINL and SP1 were abnormally increased whereas miR-2467-3p expression was suppressed in CC. Functionally, circNINL silencing or miR-2467-3p overexpression reduced CC cell progression, whereas circNINL overexpression did the opposite. CircNINL had a spongy effect on miR-2467-3p to regulate SP1 levels. miR-2467-3p inhibition or SP1 overexpression offset the inhibitory effect of circNINL silence on CC malignant progression. CONCLUSION CircNINL silencing can increase miR-2467-3p, thereby inducing the downregulation of SP1, thereby suppressing CC progression.
Collapse
Affiliation(s)
- ChengCheng Cao
- Department of Gynecology, Affiliated Hospital of Shandong Second Medical University, Shandong, China
| | - HaiFeng Zhang
- Department of Gynecology, Affiliated Hospital of Shandong Second Medical University, Shandong, China
| | - Ting Zhang
- Department of Gynecology and Obstetrics, Sunshine Union Hospital, No. 9000, Yingqian Street, High-Tech Zone, Weifang, 261000, Shandong, China
| | - CuiCui Nie
- Department of Gynecology and Obstetrics, Sunshine Union Hospital, No. 9000, Yingqian Street, High-Tech Zone, Weifang, 261000, Shandong, China.
| |
Collapse
|
2
|
Al Azzani M, Nizami ZN, Magramane R, Sekkal MN, Eid AH, Al Dhaheri Y, Iratni R. Phytochemical-mediated modulation of autophagy and endoplasmic reticulum stress as a cancer therapeutic approach. Phytother Res 2024; 38:4353-4385. [PMID: 38961675 DOI: 10.1002/ptr.8283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024]
Abstract
Autophagy and endoplasmic reticulum (ER) stress are conserved processes that generally promote survival, but can induce cell death when physiological thresholds are crossed. The pro-survival aspects of these processes are exploited by cancer cells for tumor development and progression. Therefore, anticancer drugs targeting autophagy or ER stress to induce cell death and/or block the pro-survival aspects are being investigated extensively. Consistently, several phytochemicals have been reported to exert their anticancer effects by modulating autophagy and/or ER stress. Various phytochemicals (e.g., celastrol, curcumin, emodin, resveratrol, among others) activate the unfolded protein response to induce ER stress-mediated apoptosis through different pathways. Similarly, various phytochemicals induce autophagy through different mechanisms (namely mechanistic target of Rapamycin [mTOR] inhibition). However, phytochemical-induced autophagy can function either as a cytoprotective mechanism or as programmed cell death type II. Interestingly, at times, the same phytochemical (e.g., 6-gingerol, emodin, shikonin, among others) can induce cytoprotective autophagy or programmed cell death type II depending on cellular contexts, such as cancer type. Although there is well-documented mechanistic interplay between autophagy and ER stress, only a one-way modulation was noted with some phytochemicals (carnosol, capsaicin, cryptotanshinone, guangsangon E, kaempferol, and δ-tocotrienol): ER stress-dependent autophagy. Plant extracts are sources of potent phytochemicals and while numerous phytochemicals have been investigated in preclinical and clinical studies, the search for novel phytochemicals with anticancer effects is ongoing from plant extracts used in traditional medicine (e.g., Origanum majorana). Nonetheless, the clinical translation of phytochemicals, a promising avenue for cancer therapeutics, is hindered by several limitations that need to be addressed in future studies.
Collapse
Affiliation(s)
- Mazoun Al Azzani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zohra Nausheen Nizami
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rym Magramane
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed N Sekkal
- Department of Surgery, Specialty Orthopedic, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Yusra Al Dhaheri
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Dong P, Wang L, Qiu D, Liang W, Cheng J, Wang H, Guo F, Chen Y. Evaluation of the environmental factors influencing the quality of Astragalus membranaceus var. mongholicus based on HPLC and the Maxent model. BMC PLANT BIOLOGY 2024; 24:697. [PMID: 39044138 PMCID: PMC11264576 DOI: 10.1186/s12870-024-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND In recent years, global climate change in tandem with increased human activity has resulted in habitat degradation or the migration of rare medicinal plants, potentially impacting the quality of medicinal herbs. Astragalus membranaceus var. mongholicus is a valuable bulk medicinal material in Northwest China. As the demand for this medicinal herb continues to increase in both domestic and international markets, ensuring the sustainable development of high-quality Astragali Radix is important. In this study, the maximum entropy (Maxent) model was applied, thereby incorporating 136 distribution records, along with 39 environmental factors of A. membranaceus var. mongholicus, to assess the quality zonation and potential distribution of this species in China under climate change. RESULTS The results showed that the elevation, annual mean temperature, precipitation of wettest month, solar radiation in June, and mean temperature of warmest quarter were the critical environmental factors influencing the accumulation of astragaloside IV and Astragalus polysaccharide in A. membranaceus var. mongholicus. Among the twelve main environmental variables, annual mean temperature, elevation, precipitation of the wettest month, and solar radiation in November were the four most important factors influencing the distribution of A. membranaceus var. mongholicus. In addition, ecological niche modelling revealed that highly suitable habitats were mainly located in central and western Gansu, eastern Qinghai, northern Shaanxi, southern Ningxia, central Inner Mongolia, central Shanxi, and northern Hebei. However, the future projections under climate change suggested a contraction of these suitable areas, shifting towards northeastern high-latitude and high-elevation mountains. CONCLUSIONS The findings provide essential insights for developing adaptive strategies for A. membranaceus var. mongholicus cultivation in response to climate change and can inform future research on this species. By considering the identified environmental factors and the potential impacts of the predicted climate changes, we can visualize the regional distribution of high-quality Radix Astragali and develop conservation strategies to protect and restore its suitable habitats.
Collapse
Affiliation(s)
- Pengbin Dong
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Lingjuan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Daiyu Qiu
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wei Liang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jiali Cheng
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Hongyan Wang
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China
| | - Fengxia Guo
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Yuan Chen
- College of Agronomy, College of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
4
|
Sheng F, Yang S, Li M, Wang J, Liu L, Zhang L. Research Progress on the Anti-Cancer Effects of Astragalus membranaceus Saponins and Their Mechanisms of Action. Molecules 2024; 29:3388. [PMID: 39064966 PMCID: PMC11280308 DOI: 10.3390/molecules29143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Astragalus membranaceus saponins are the main components of A. membranaceus, a plant widely used in traditional Chinese medicine. Recently, research on the anti-cancer effects of A. membranaceus saponins has received increasing attention. Numerous in vitro and in vivo experimental data indicate that A. membranaceus saponins exhibit significant anti-cancer effects through multiple mechanisms, especially in inhibiting tumor cell proliferation, migration, invasion, and induction of apoptosis, etc. This review compiles relevant studies on the anti-cancer properties of A. membranaceus saponins from various databases over the past two decades. It introduces the mechanism of action of astragalosides, highlighting their therapeutic benefits in the management of cancer. Finally, the urgent problems in the research process are highlighted to promote A. membranaceus saponins as an effective drug against cancer.
Collapse
Affiliation(s)
- Feiya Sheng
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Siyu Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Jiaojiao Wang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
5
|
Zhou J, Li L, Pu Y, Li H, Wu X, Wang Z, Sun J, Song Q, Zhou L, Ma X, Yang L, Ji Q. Astragaloside IV inhibits colorectal cancer metastasis by reducing extracellular vesicles release and suppressing M2-type TAMs activation. Heliyon 2024; 10:e31450. [PMID: 38831823 PMCID: PMC11145472 DOI: 10.1016/j.heliyon.2024.e31450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 06/05/2024] Open
Abstract
Ethnopharmacological relevance Tumour-derived extracellular vesicles (TEVs) have been confirmed to facilitate colorectal cancer (CRC) metastasis by remodelling the tumour microenvironment (TME). Drugs targeted TEVs is considered as a promising therapeutic strategy for cancer treatment. Traditional Chinese medicine (TCM) plays a vital role in improving the prognosis of CRC patients and eventually CRC patients with distant metastasis. Although the anti-tumour effects of active compounds from TCM prescriptions are observed widely, the molecular mechanisms remain unknown. Aim of the study This study aims to investigate the effects of active compounds in our library of TCM on preventing CRC metastasis, and also explore the potential mechanisms from the perspective of TEVs. Materials and methods: The effects of active compounds on the proliferation of CRC cells were determined by CCK-8 assay. TEVs were extracted from MC38 cells by ultracentrifugation and characterized by electron microscopy, Nanosight NS300 and western blotting. The TEV particles were quantified by Nanosight NS300. The potential mechanism by which astragaloside IV (ASIV) reduced TEV secretion was determined by western blotting. RAW264.7 cells were cocultured with the conditioned medium (CM) of MC38 cells treated with or without ASIV, and the activation of tumour-associated macrophages (TAMs) was assessed by immunofluorescence and quantitative polymerase chain reaction (qPCR). The migration of CRC cells was measured by wound healing and Transwell assay. A spleen-to-liver metastasis model of colorectal cancer was used to confirm the efficiency of ASIV in vivo. Liver metastatic tumours of the mice were used for liver weight measures and H&E staining. Immunofluorescence was applied to observe the infiltration of TAMs, the expression of neutral sphingomyelinase 2 (nSMase2) and Rab27a. Results By screening our TCM monomer library, we found that ASIV, which is mainly extracted from Radix Astragali, reduced the release of TEVs from CRC cells in a time- and concentration-dependent manner. Mechanistically, ASIV inhibited the production and secretion of TEVs by downregulating nSMase2 and Rab27a expression in CRC cells. CM from ASIV-treated CRC cells reshaped the polarization of TAMs by decreasing M2-type polarization, increasing M1-type polarization. Consequently, the repolarization of M2-type to M1-type macrophages led to reduced invasion and migration of CRC cells. Moreover, we confirmed that ASIV inhibited the liver metastasis of CRC, reduced M2-type macrophage infiltration and decreased the expression of nSMase2 and Rab27a in liver metastases. Conclusions ASIV inhibited CRC metastasis by reducing EVs release and suppressing M2-type TAMs activation. All these findings reveal a new insight into the mechanisms of ASIV in preventing CRC progression and provide a promising approach for anti-tumour therapy.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, 315000, China
| | - Ling Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haoze Li
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinnan Wu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziyuan Wang
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Sun
- Department of Peripheral Vascular Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215007, China
| | - Lihong Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinwen Ma
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Liu Yang
- Department of Oncology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Yang Z, Luo J, Zhang M, Zhan M, Bai Y, Yang Y, Wang W, Lu L. TMSB4X: A novel prognostic marker for non-small cell lung cancer. Heliyon 2023; 9:e21505. [PMID: 38027718 PMCID: PMC10663839 DOI: 10.1016/j.heliyon.2023.e21505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Non-small cell lung cancer (NSCLC), as the main type of lung cancer, has a long history of high incidence and mortality. Despite the continuous updates to the American Joint Committee on Cancer (AJCC) staging system, which adapt to evolving treatment modalities and diagnostic advancements, it is evident that patients at the same stage exhibit varying prognoses. The heterogeneity of tumors underscores the need for molecular diagnostics to assume a pivotal role in tumor staging and patient stratification. In our investigation, we meticulously analyzed the data of the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, incorporating clinical patients and scrutinizing pathological specimens. Through this comprehensive approach, we established a correlation between the expression of the Thymosin beta 4 X-linked (TMSB4X) gene and poorer disease-free survival (DFS) and overall survival (OS) post-surgery. Compared to the TMSB4X positive expression group, patients in the negative expression group had a better prognosis, with longer DFS (median disease-free survival (median DFS): 16.2 months vs. 11.3 months, P = 0.032) and OS (median overall survival (mOS): 29.8 months vs. 18.5 months, P = 0.033). Furthermore, our findings suggest that TMSB4X may facilitate immune evasion in non-small cell lung cancer cells by influencing the activation of infiltrating dendritic cells (DCs) in tumor infiltrating immune cells (TIICs) (R = 0.27, P = 4.8E+08). In summary, TMSB4X emerges as an unfavorable prognostic factor for NSCLC, potentially modulating the tumor immune microenvironment through its regulatory impact on dendritic cell function, thus facilitating tumor immune escape.
Collapse
Affiliation(s)
- Ze Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
- The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Gui Zhou, China
| | - Jihang Luo
- Affiliated Hospital of Zunyi Medical University, Zun Yi, Gui Zhou, China
| | - Mengmei Zhang
- Zunyi Medical and Pharmaceutical College, Zun Yi, Gui Zhou, China
| | - Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Yuju Bai
- The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Gui Zhou, China
| | - Yi Yang
- The Second Affiliated Hospital of Zunyi Medical University, Zun Yi, Gui Zhou, China
| | - Wei Wang
- Department of Pulmonary and Critical Care Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, Guangdong, China
| |
Collapse
|
7
|
Qin S, Chen J, Zhong K, Li D, Peng C. Could Cyclosiversioside F Serve as a Dietary Supplement to Prevent Obesity and Relevant Disorders? Int J Mol Sci 2023; 24:13762. [PMID: 37762063 PMCID: PMC10531328 DOI: 10.3390/ijms241813762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Obesity is the basis of numerous metabolic diseases and has become a major public health issue due to its rapidly increasing prevalence. Nevertheless, current obesity therapeutic strategies are not sufficiently effective, so there is an urgent need to develop novel anti-obesity agents. Naturally occurring saponins with outstanding bio-activities have been considered promising drug leads and templates for human diseases. Cyclosiversioside F (CSF) is a paramount multi-functional saponin separated from the roots of the food-medicinal herb Astragali Radix, which possesses a broad spectrum of bioactivities, including lowering blood lipid and glucose, alleviating insulin resistance, relieving adipocytes inflammation, and anti-apoptosis. Recently, the therapeutic potential of CSF in obesity and relevant disorders has been gradually explored and has become a hot research topic. This review highlights the role of CSF in treating obesity and obesity-induced complications, such as diabetes mellitus, diabetic nephropathy, cardiovascular and cerebrovascular diseases, and non-alcoholic fatty liver disease. Remarkably, the underlying molecular mechanisms associated with CSF in disease therapy have been partially elucidated, especially PI3K/Akt, NF-κB, MAPK, apoptotic pathway, TGF-β, NLRP3, Nrf-2, and AMPK, with the aim of promoting the development of CSF as a functional food and providing references for its clinical application in obesity-related disorders therapy.
Collapse
Affiliation(s)
| | | | | | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
8
|
Wang DD, Zhang LZ, Pang CJ, Ye JZ. Astragaloside IV promotes keratinocyte proliferation and migration through upregulating lncRNA H19 recruited ILF3 to enhance the stability of CDK4 mRNA. Kaohsiung J Med Sci 2023; 39:811-823. [PMID: 37132584 DOI: 10.1002/kjm2.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023] Open
Abstract
Skin is the first line of the body to resist pathogen invasion. A potentially fatal infection may result from problems with wound healing. Small molecule drugs like astragaloside IV (AS-IV) show pro-healing activities, but the mechanisms are not fully understood. Using real-time quantitative PCR and a western blot assay, the amount of gene expression was evaluated. The proliferation and migration of keratinocytes were determined by MTS and wound healing assay, respectively. The binding of lncRNA H19 to RBP protein ILF3 and the binding of ILF3 protein to CDK4 mRNA were confirmed by RNA immunoprecipitation. Treatment with AS-IV enhanced the expression of lncRNA H19, ILF3, and CDK4 and improved the proliferation and migration of keratinocytes HaCaT. Additionally, apoptosis of keratinocytes was attenuated by AS-IV. Further studies showed that both lncRNA H19 and ILF3 were important for AS-IV-mediated keratinocyte growth and migration. In addition, lncRNA H19 recruited ILF3 to increase CDK4 mRNA level and enhanced cell proliferation. We discovered a lncRNA H19/ILF3/CDK4 axis that is activated by AS-IV to promote keratinocyte migration and proliferation. These results elucidate the mechanism of action of AS-IV and justify its application in further application in wound healing treatment.
Collapse
Affiliation(s)
- Dan-Dan Wang
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, PR China
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Li-Ze Zhang
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Cheng-Jian Pang
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Jian-Zhou Ye
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
9
|
Tan J, Yi J, Cao X, Wang F, Xie S, Dai A. Untapping the Potential of Astragaloside IV in the Battle Against Respiratory Diseases. Drug Des Devel Ther 2023; 17:1963-1978. [PMID: 37426627 PMCID: PMC10328396 DOI: 10.2147/dddt.s416091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Respiratory diseases are an emerging public health concern, that pose a risk to the global community. There, it is essential to establish effective treatments to reduce the global burden of respiratory diseases. Astragaloside IV (AS-IV) is a natural saponin isolated from Radix astragali (Huangqi in Chinese) used for thousands of years in Chinese medicine. This compound has become increasingly popular due to its potential anti-inflammatory, antioxidant, and anticancer properties. In the last decade, accumulated evidence has indicated the AS-IV protective effect against respiratory diseases. This article presents a current understanding of AS-IV roles and mechanisms in combatting respiratory diseases. The ability of the agent to suppress oxidative stress, cell proliferation, and epithelial-mesenchymal transition (EMT), to attenuate inflammatory responses, and modulate programmed cell death (PCD) will be discussed. This review highlights the current challenges in respiratory diseases and recommendations to improve disease management.
Collapse
Affiliation(s)
- Junlan Tan
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Jian Yi
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| | - Xianya Cao
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Feiying Wang
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Silin Xie
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Aiguo Dai
- Hunan Provincial Key Laboratory of Vascular Biology and Translational Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Diseases, School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
- Department of Respiratory Medicine, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, People's Republic of China
| |
Collapse
|
10
|
Zhou Y, Huang X, Yu H, Shi H, Chen M, Song J, Tang W, Teng F, Li C, Yi L, Zhu X, Wang N, Wei Y, Wuniqiemu T, Dong J. TMT-based quantitative proteomics revealed protective efficacy of Icariside II against airway inflammation and remodeling via inhibiting LAMP2, CTSD and CTSS expression in OVA-induced chronic asthma mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154941. [PMID: 37451150 DOI: 10.1016/j.phymed.2023.154941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airflow limitation, airway inflammation and remodeling. Icariside II (IS), derived from herbal medicine Herba Epimedii, exerts an anti-inflammatory property. However, underlying mechanisms with specifically targeted molecular expression by IS in asthma have not been fully understood, and whether IS could inhibit remodeling and EMT still remains unclear. PURPOSE The study aimed to clarify therapeutic efficacy of IS for attenuating airway inflammation and remodeling in asthma, and illustrate IS-regulated specific pathway and target proteins through TMT-based quantitative proteomics. STUDY DESIGN AND METHODS Murine model of chronic asthma was constructed with ovalbumin (OVA) sensitization and then challenge for 8 weeks. Pulmonary function, leukocyte count in bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory and fibrotic cytokines, and markers of epithelial-mesenchymal transition (EMT) were evaluated. TMT-based quantitative proteomics were performed on lung tissues to explore IS-regulated proteins. RESULTS IS contributed to alleviative airway hyperresponsiveness (AHR) evidenced by declined RL and increased Cdyn. After IS treatment, we observed a remarked down-regulation of leukocyte count, inflammatory cytokines in BALF, and peribronchial inflammation infiltration. Goblet cell hyperplasia, mucus secretion and peribronchial collagen deposition were attenuated, with the level of TGF-β and MMP-9 in BALF declined. Furthermore, IS induced a rise of Occludin and E-cadherin and a decline of N-cadherin and α-SMA in lung tissues. These results proved the protective property of IS against airway inflammation, remodeling and EMT. To further investigate underlying mechanisms of IS in asthma treatment, TMT-based quantitative proteomics were performed and 102 overlapped DEPs regulated by IS were identified. KEGG enrichment exhibited these DEPs were enriched in lysosome, phagosome and autophagy, in which LAMP2, CTSD and CTSS were common DEPs. WB, q-PCR and IHC results proofed expressional alteration of these proteins. Besides, IS could decrease Beclin-1 and LC3B expression with increasing p62 expression thus inhibiting autophagy. CONCLUSIONS The study demonstrated IS could ameliorate AHR, airway inflammation, remodeling and EMT in OVA-induced chronic asthma mice. Our research was the first to reveal that inhibition of LAMP2, CTSD and CTSS expression in autophagy contributed to the therapeutic efficacy of IS to asthma.
Collapse
Affiliation(s)
- Yaolong Zhou
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Xi Huang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hang Yu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Hanlin Shi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingrong Song
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Congcong Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Na Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Liao D, Liu Y, Li C, He B, Zhou G, Cui Y, Huang H. Arctigenin hinders the invasion and metastasis of cervical cancer cells via the FAK/paxillin pathway. Heliyon 2023; 9:e16683. [PMID: 37292259 PMCID: PMC10245248 DOI: 10.1016/j.heliyon.2023.e16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Context Cervical cancer is the most common gynecological pernicious tumor with high morbidity and mortality worldwide, especially in developing countries. Arctigenin (ARG), a nature-derived component, has exhibited anti-tumor activity in various tumors. Objective To explore the effect of ARG on cervical cancer. Materials and methods The effect and mechanism of ARG on cervical cancer cells were explored by cell counting kit-8 (CCK-8), flow cytometry, transwell and Western blot assays. Additionally, in vivo experiment was conducted in xenografted mice by immunohistochemistry (IHC), terminal deoxynucleotidyl transferase deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) and Western blot assays. Results ARG treatment induced both concentration-dependent and time-dependent reductions in the cell viability of SiHa and HeLa cells with a IC50 value of 9.34 μM and 14.45 μM, respectively. ARG increased the apoptosis rate and the protein levels of cleaved-caspase 3 and E-cadherin, but decreased the invaded cell numbers and the protein levels of Vimentin and N-cadherin in vitro. Mechanically, ARG inhibited the expression of focal adhesion kinase (FAK)/paxillin pathway, which was confirmed by the overexpression of FAK in SiHa cells. The inhibitory role of overexpression of FAK in proliferation and invasion, as well as its promoted role in apoptosis were reversed with ARG treatment. Meanwhile, ARG suppressed growth and metastasis, and enhanced apoptosis in vivo. Consistently, ARG administration reduced the relative protein level of p-FAK/FAK and p-paxillin/paxillin in tumor tissues of xenografted mice. Conclusion ARG inhibited proliferation, invasion and metastasis, but enhanced apoptosis of cervical cancer via the FAK/paxillin axis.
Collapse
Affiliation(s)
- Dan Liao
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yanyan Liu
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Cuifen Li
- .Department of Gynaecology, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Bin He
- .Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Guanghui Zhou
- .Department of Rehabilitation Medicine, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Yejia Cui
- .Department of Laboratory, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| | - Haohai Huang
- .Medical and Pharmacy Research Laboratory, SSL Central Hospital of Dongguan, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
- .Department of Clinical Pharmacy, SSL Central Hospital of Dongguan, Dongguan Third People's Hospital, Affiliated Dongguan Shilong People's Hospital of Southern Medical University, Dongguan, Guangdong, China
| |
Collapse
|
12
|
Tao T, Zhang P, Zeng Z, Wang M. Advances in autophagy modulation of natural products in cervical cancer. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116575. [PMID: 37142142 DOI: 10.1016/j.jep.2023.116575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Natural products play a critical role in drug development and is emerging as a potential source of biologically active metabolites for therapeutic intervention, especially in cancer therapy. In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. Understanding the mechanisms of these natural products helps to develop medications for cervical cancer treatments. AIM OF THE STUDY In recent years, there is increasing evidence that many natural products may modulate autophagy through various signaling pathways in cervical cancer. In this review, we briefly introduce autophagy and systematically describe several classes of natural products implicated in autophagy modulation in cervical cancer, hoping to provide valuable information for the development of cervical cancer treatments based on autophagy. MATERIALS AND METHODS We searched for studies on natural products and autophagy in cervical cancer on the online database and summarized the relationship between natural products and autophagy modulation in cervical cancer. RESULTS Autophagy is a lysosome-mediated catabolic process in eukaryotic cells that plays an important role in a variety of physiological and pathological processes, including cervical cancer. Abnormal expression of cellular autophagy and autophagy-related proteins has been implicated in cervical carcinogenesis, and human papillomavirus infection can affect autophagic activity. Flavonoids, alkaloids, polyphenols, terpenoids, quinones, and other compounds are important sources of natural products that act as anticancer agents. In cervical cancer, natural products exert the anticancer function mainly through the induction of protective autophagy. CONCLUSIONS The regulation of cervical cancer autophagy by natural products has significant advantages in inducing apoptosis, inhibiting proliferation, and reducing drug resistance in cervical cancer.
Collapse
Affiliation(s)
- Tao Tao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Shenyang Women's and Children's Hospital, Shenyang, Liaoning Province, China
| | - Zhi Zeng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Min Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
13
|
Shen L, Li Y, Hu G, Song X, Wang X, Li X, Xu X. Astragaloside IV suppresses the migration and EMT progression of cervical cancer cells by inhibiting macrophage M2 polarization through TGFβ/Smad2/3 signaling. Funct Integr Genomics 2023; 23:133. [PMID: 37081108 DOI: 10.1007/s10142-023-01017-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 04/22/2023]
Abstract
Cervical cancer (CC) is a gynecological malignant tumor worldwide. Astragaloside IV (AS-IV) has been found to exert antitumor effects on CC. In addition, M2-polarized macrophages, known as tumor-associated macrophages (TAMs), play an important role in promoting cancer cell growth and angiogenesis. Thus, we explored the association between the antitumor effect of AS-IV and macrophage polarization in CC. Flow cytometry, ELISA, and RT‒qPCR assays were applied to detect the levels of CD163, IL-10, TGFβ, and CD206 in M2 macrophages with or without AS-IV treatment. In addition, conditioned medium (CM) was collected from these M2 macrophages, and CC cells were then cultured in various CMs. Wound healing and transwell assays were used to assess the migratory ability of CC cells. In this study, we found that AS-IV significantly inhibited M2 polarization of macrophages, as shown by decreased CD163, IL-10, TGFβ, and CD206 expression. In addition, compared with CM from M2 macrophages, CM from AS-IV-treated M2 macrophages notably inhibited angiogenesis, migration, and epithelial-mesenchymal transition (EMT) in CC cells. Furthermore, compared with CM from M2 macrophages, CM from AS-IV-treated M2 macrophages markedly reduced p-Smad2 and p-Smad3 protein expression in CC cells, and these changes were reversed by TGF-β treatment. Collectively, suppression of M2-like polarization of macrophages by AS-IV could prevent the migration and EMT of CC cells by inactivating TGF-β/Smad2/3 signaling. These findings might provide some theoretical support for exploring novel treatments for CC.
Collapse
Affiliation(s)
- Ling Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Yuancheng Li
- Department of Gynecology, Cancer Hospital Affiliated to Shantou University Medical College, Shantou, Guangdong, China
| | - Guiying Hu
- Department of Gynecology, Guangdong Maternal and Child Health Hospital, Guangzhou, Guangdong, China
| | - Xinli Song
- Department of Microbiology and Immunology, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaoshuang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Xiaoqi Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, 515041, Guangdong, China
| | - Xiaoyuan Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shantou University Medical College, No. 57 Changping Road, Jinping District, Shantou, 515041, Guangdong, China.
| |
Collapse
|
14
|
Ahmed TI, Ali S. The enduring interdependence of shotgun and targeted proteomics in cancer research. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
15
|
Xia D, Li W, Tang C, Jiang J. Astragaloside IV, as a potential anticancer agent. Front Pharmacol 2023; 14:1065505. [PMID: 36874003 PMCID: PMC9981805 DOI: 10.3389/fphar.2023.1065505] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer is a global intractable disease, and its morbidity and mortality are increasing year by year in developing countries. Surgery and chemotherapy are often used to treat cancer, but they result in unsatisfactory outcomes, such as severe side effects and drug resistance. With the accelerated modernization of traditional Chinese medicine (TCM), an increasing body of evidence has shown that several TCM components have significant anticancer activities. Astragaloside IV (AS-IV) is considered the main active ingredient of the dried root of Astragalus membranaceus. AS-IV exhibits various pharmacological effects, such as anti-inflammatory, hypoglycemic, antifibrotic, and anticancer activities. AS-IV possesses a wide range of activities, such as the modulation of reactive oxygen species-scavenging enzyme activities, participation in cell cycle arrest, induction of apoptosis and autophagy, and suppression of cancer cell proliferation, invasiveness, and metastasis. These effects are involved in the inhibition of different malignant tumors, such as lung, liver, breast, and gastric cancers. This article reviews the bioavailability, anticancer activity, and mechanism of AS-IV and provides suggestions for further research of this TCM.
Collapse
Affiliation(s)
- Dongqin Xia
- Chongqing University Cancer Hospital, Chongqing, China
| | - Wenjie Li
- Affiliated Hospital of Northwest Minzu University, Lanzhou, China
| | - Ce Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Jiang
- Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
16
|
Zhou R, Guo T, Li J. Research progress on the antitumor effects of astragaloside IV. Eur J Pharmacol 2022; 938:175449. [PMID: 36473596 DOI: 10.1016/j.ejphar.2022.175449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
One of the most important and effective components of Astragalus membranaceus is astragaloside IV (AS-IV), which can exert anti-tumor effects through various pathways. For instance, AS-IV exerts an anti-tumor effect by acting at the cellular level, regulating the phenotype switch of tumor-associated macrophages, or inhibiting the development of tumor cells. Furthermore, AS-IV inhibits tumor cell progression by enhancing its sensitivity to antitumor drugs or reversing the drug resistance of tumor cells. This article reviews the different mechanisms of AS-IV inhibition of epithelial-mesenchymal transition (EMT), migration, proliferation, and invasion of tumor cells, inducing apoptosis and improving the sensitivity of anti-tumor drugs. This review summarizes recent progress in the current research into AS-IV anti-tumor effect and provides insight on the next anti-tumor research of AS-IV.
Collapse
Affiliation(s)
- Ruixi Zhou
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
17
|
Yang Y, Hong M, Lian WW, Chen Z. Review of the pharmacological effects of astragaloside IV and its autophagic mechanism in association with inflammation. World J Clin Cases 2022; 10:10004-10016. [PMID: 36246793 PMCID: PMC9561601 DOI: 10.12998/wjcc.v10.i28.10004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023] Open
Abstract
Astragalus membranaceus Bunge, known as Huangqi, has been used to treat various diseases for a long time. Astragaloside IV (AS-IV) is one of the primary active ingredients of the aqueous Huangqi extract. Many experimental models have shown that AS-IV exerts broad beneficial effects on cardiovascular disease, nervous system diseases, lung disease, diabetes, organ injury, kidney disease, and gynaecological diseases. This review demonstrates and summarizes the structure, solubility, pharmacokinetics, toxicity, pharmacological effects, and autophagic mechanism of AS-IV. The autophagic effects are associated with multiple signalling pathways in experimental models, including the PI3KI/Akt/mTOR, PI3K III/Beclin-1/Bcl-2, PI3K/Akt, AMPK/mTOR, PI3K/Akt/mTOR, SIRT1–NF-κB, PI3K/AKT/AS160, and TGF-β/Smad signalling pathways. Based on this evidence, AS-IV could be used as a replacement therapy for treating the multiple diseases referenced above.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng Hong
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Wen-Wen Lian
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
18
|
Astragaloside IV Inhibits the Proliferation of Human Uterine Leiomyomas by Targeting IDO1. Cancers (Basel) 2022; 14:cancers14184424. [PMID: 36139584 PMCID: PMC9496999 DOI: 10.3390/cancers14184424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Immunotherapy is increasingly becoming a success strategy for oncology treatment. Indoleamine-2,3-dioxygenase1 (IDO1) is a tryptophan-degrading enzyme involved in immunological escape mechanisms, which is considered as a potential target for tumor therapy. However, the clinical efficacy of IDO1 inhibitors is not promising. Therefore, there is an urgent to investigate the mechanism between chemical drugs with antitumor effects and IDO1-mediated immunosuppression. The Chinese medicine AS-IV exerts antitumor effects with many advantages, including fewer toxic side effects and immunomodulatory effects. We noted the lack of studies of AS-IV on benign tumors. Therefore, our study demonstrates the Inhibitory effect of AS-IV on ULMs and elucidates the underlying mechanism. Abstract Astragaloside IV (AS-IV) is a chemical found in traditional Chinese medicine called Astragalus membranaceus (Fisch.) Bunge that has antitumor properties. However, the roles and mechanisms of AS-IV in uterine leiomyomas (ULMs) are unclear. The immunosuppressive enzyme indoleamine-2,3-dioxygenase-1 (IDO1) is involved in tumor formation. IDO1 is a new and reliable prognostic indicator for several cancers. In this work, AS-IV was applied to ULM cells in various concentrations. CCK-8, immunofluorescence, and flow cytometry were used to examine the proliferation and apoptosis of ULM cells caused by AS-IV. After lentiviral vector transduction with IDO1 short hairpin RNA (shRNA), the knockdown and overexpression of IDO1 were stable in ULM cells. To verify the antitumor effect of AS-IV in vivo, we established a rat model of uterine leiomyoma. HE staining, Masson staining, and transmission electron microscopy were used to observe pathological changes in the uterus, and the levels of serum sex hormones were measured by radio immune assay (RIA). The levels of CD3+T, CD4+T, and CD25+ Foxp3+Treg in rat peripheral blood were detected by flow cytometry. Western blotting and immunohistochemistry were used to examine protein expression. We found that AS-IV dramatically increased the apoptotic rate of ULM cells and reduced viability in a time- and dosage-dependent manner. After sh-IDO1 lentiviral transfection, we discovered that knocking down IDO1 reversed the effects of AS-IV on ULM cell proliferation and autophagy. We also found that AS-IV can effectively inhibit the growth of ULMs in vivo. AS-IV may promote apoptosis and autophagy in ULMs by activating PTEN/PI3K/AKT signaling through inhibition of IDO1. These findings imply that AS-IV exerts antifibroid effects, and the underlying mechanism may be IDO1, which is involved in proliferation, apoptosis, and autophagy.
Collapse
|
19
|
Zhang W, Ye L, Fang H. Astragaloside IV Improve Neurological Function of Cerebral Ischemia. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study intends to assess astragaloside IV’s effect on neurological function in mice cerebral ischemia model. The mouse model of cerebral ischemia was established by photochemistry and then assigned into sham operation group (photochemical building do not accept cold light
irradiation) and control group (10 ug/ml by intraperitoneal injection of saline solution), drug group (10 ug/ml by intraperitoneal injection of Astragaloside IV) followed by analysis of neurological severity, cerebral infarction area, loss of neurons, glial cell activation and the activities
of LC3, Beclin1, Caspase-3, P62 and mTOR by Western Blot. The neurons in cerebral infarction were missing and marginal area and penumbra appeared. The tissue in cerebral infarction became white, and the modeling was successful. The drug group showed significantly reduced scores and decreased
infarct area of brain tissue compared with control group on day 14, 21 and 28 (P < 0.05). TUNEL staining showed increased number of TUNEL cells at the ischemic edge in the drug group (0.35±0.07)% (P < 0.05), while the IBAL staining of (27.12±3.01)% and GFAP
staining of (0.08±0.02)% in the drug group showed significant inhibition of astrocytes (P < 0.05). The activity of LC3, Beclin1, Caspase-3 and P62 in drug group was inhibited, while the activity of mTOR was promoted. In conclusion, Astragaloside IV improves the balance ability
and the neural function of cerebral ischemia repair in mice model.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Enesthesiology, Enshi Tujia and Miao Autonomous Prefecture Central Hospital, Enshi, Hubei, 445000, China
| | - Lun Ye
- Department of Emergency, Jiangjin Central Hospital of Chongqing, Chongqing, 402260, China
| | - Hairong Fang
- Department of Neurology (II) Ward, The First People’s Hospital of Jiangxia District, Wuhan, Hubei, 430000, China
| |
Collapse
|
20
|
Zhao J, Niu N, He Z. Effect of Thymosin on Inflammatory Factor Levels, Immune Function, and Quality of Life in Lung Cancer Patients Undergoing Radical Thoracoscopic Surgery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8749999. [PMID: 35832513 PMCID: PMC9273385 DOI: 10.1155/2022/8749999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 12/01/2022]
Abstract
Purpose To explore the effect of thymosin on inflammatory factor levels, immune function, and quality of life in patients undergoing radical thoracoscopic lung cancer surgery. Methods One hundred and twenty patients admitted to the Surgical Oncology Department of the First Hospital of Jiaxing from January 2018 to January 2019 were randomized into the study group and the control group using the random number table method, with 60 cases in each group. The control group was treated with radical thoracoscopic lung cancer surgery, and the study group was treated with radical thoracoscopic lung cancer surgery combined with thymosin. The clinical efficiency, inflammatory factors, immune function, and quality of life between the two groups of patients were compared. Results There was no significant difference between the two groups in terms of pathological stage, tissue type, maximum tumor diameter, and perioperative indicators such as operative time, intraoperative bleeding, pleural drainage, hospital stay, and the number of intraoperative lymph nodes removed. The levels of CD4 (+%), CD8 (+%), CD4+/CD8+, and natural killer cell (NK) (%) were significantly decreased in both groups after treatment, with significantly higher results in the study group than in the control group. The study group had significantly lower serum interleukin-6 (IL-6) levels and higher interleukin-10 (IL-10) levels than the control group. After treatment, patients in the study group had better postoperative physiological status and overall score than the control group. There was no significant difference in postoperative survival and adverse reactions between the two groups. Conclusion The use of thymosin treatment in lung cancer patients undergoing radical thoracoscopic surgery significantly improves immune function, mitigates inflammatory response, and enhances the quality of life, which is worthy of clinical application.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Thoracic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Niu Niu
- Department of Thoracic Surgery, The First Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Zhengfu He
- Sir Run Run Shaw Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Song L, Liu S, Zhao S. Everolimus (RAD001) combined with programmed death-1 (PD-1) blockade enhances radiosensitivity of cervical cancer and programmed death-ligand 1 (PD-L1) expression by blocking the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/S6 kinase 1 (S6K1) pathway. Bioengineered 2022; 13:11240-11257. [PMID: 35485300 PMCID: PMC9208494 DOI: 10.1080/21655979.2022.2064205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer (CC) is the 4th most prevalent malignancy in females. This study explored the mechanism of everolimus (RAD001) combined with programmed death-1 (PD-1) blockade on radiosensitivity by phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway and autophagy in CC cells. Low-radiosensitive CaSki cells were selected as study objects. After RAD001 treatment, PI3K/AKT/mTOR pathway activation, autophagy, migration and invasion abilities, autophagy-related proteins (LC3-I, LC3-II, and p62), and PD-L1 expression in CC cells were detected. After triple treatment of radiotherapy (RT), RAD001, and PD-1 blockade to the CC mouse models, tumor weight and volume were recorded. Ki67 expression, the number of CD8 + T cells, and the ability to produce IFN-γ and TNF-α in tumor tissues were determined. RAD001 promoted autophagy by repressing PI3K/AKT/mTOR pathway, augmented RT-induced apoptosis, and weakened migration and invasion, thereby increasing CC cell radiosensitivity. RAD001 elevated RT-induced PD-L1 level. RT combined with RAD001 and PD-1 blockade intensified the inhibitory effect of RT on tumor growth, reduced the amount of Ki67-positive cells, enhanced radiosensitivity of CC mice, and increased the quantity and killing ability of CD8 + T cells. Briefly, RAD001 combined with PD-1 blockade increases radiosensitivity of CC by impeding the PI3K/AKT/mTOR pathway and potentiating cell autophagy.
Collapse
Affiliation(s)
- Lili Song
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shikai Liu
- Department of Obstetrics and Gynecology, Cangzhou Central Hospital, Cangzhou, Hebei, China
| | - Sufen Zhao
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
22
|
Luo Q, Chen S, Zhu J, Ye L, Hall ND, Basak S, McElroy JS, Chen Y. Overexpression of EiKCS confers paraquat-resistance in rice (Oryza sativa L.) by promoting the polyamine pathway. PEST MANAGEMENT SCIENCE 2022; 78:246-262. [PMID: 34476895 PMCID: PMC9292836 DOI: 10.1002/ps.6628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Paraquat is used widely as one of the bipyridine herbicides, which generates reactive oxygen species to cause cell death. With a growing number of paraquat-resistant weeds, the mechanism of paraquat-resistance in plants remains unclear. This research verified the functions of a previously confirmed putative paraquat-resistant gene, EiKCS, from paraquat-resistant goosegrass by genetic engineering in a single overexpressing line in rice. RESULTS Overexpression of EiKCS improved paraquat resistance in transgenic rice (KCSox). Pre-applied (12 h) exogenous spermidine (1.5 mmol L-1 ), alleviated the injury of paraquat in rice. Paraquat induced injury in KCSox was 19.57%, which was lower than 32.22% injury it induced in wild-type (WT) rice. The paraquat-resistant mechanism was through the increased activity of antioxidant enzymes and the overproduction of endogenous polyamines. The spermine content in KCSox was more than 30 μg mL-1 , while that in WT rice was less than 5 μg mL-1 . Quantitative proteomics showed that β-ketoacyl-coenzyme A (CoA) synthase (51.81 folds) encoded by the transgenic EiKCS gene promoted the synthesis of the proteins involved with the polyamine pathway. The synthesized putrescine was promoted by the arginine decarboxylase (ADC) pathway. The spermidine synthase I (1.10-fold) and three eceriferum cofactors (CERs) were responsive to the paraquat stress. We validated putrescine (C18 H20 N2 O2 ) spermidine (C28 H31 N3 O3 ), and spermine (C38 H42 N4 O4 ) in this study. CONCLUSION EiKCS encoding β-ketoacyl-CoA synthase from goosegrass has been shown as an ideal candidate gene for engineering genetically modified organism (GMO) crops, as its overexpression does not only bring paraquat-resistance, but also have potential benefits without decreasing yield and rice grain quality. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiyu Luo
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Shu Chen
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Jiazheng Zhu
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Laihua Ye
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| | - Nathan Daniel Hall
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Suma Basak
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Joseph Scott McElroy
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnALUSA
| | - Yong Chen
- Department of Crop Cultivation and Farming SystemSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
23
|
Effect of Psychological Care Combined with Traditional Chinese Medicine on Postoperative Psychological Stress Response in Patients with Advanced Cervical Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5612925. [PMID: 34621324 PMCID: PMC8492293 DOI: 10.1155/2021/5612925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/18/2021] [Indexed: 01/09/2023]
Abstract
Objective To study the effects of psychological care combined with traditional Chinese medicine treatment on the postoperative psychological stress response and the expression levels of serum C-reactive protein (CRP) and interferon-γ (IFN-γ) in patients with advanced cervical cancer. Method 232 postoperative advanced cervical cancer patients treated in our hospital from December 2015 to December 2018 were selected as study objects and divided into the control group and study group using the random number table method. The control group was given basic care combined with traditional Chinese medicine treatment, while the study group was given psychological care treatment on the basis of the control group to compare the treatment effect, psychological stress response, pain level, quality of life, and long-term efficacy of the two groups. The serum CRP and IFN-γ levels and their correlation with different psychological stress responses were compared between the two groups before and after treatment. Result Comparing the clinical efficacy of the two groups, the total effective rate of the study group was higher than that of the control group. VAS scores in the study group were significantly lower than those in the control group 30 and 60 days after treatment. The SCL-90 scores of the study group after treatment were lower than those of the control group. After treatment, the differences between the two groups were statistically significant in the scores of emotional function, social function, and role function. The two-year cumulative survival rate in the study group (82.76%) was significantly increased compared to that in the control group (55.17%). The serum CRP and IFN-γ expression levels in the two groups were significantly decreased after treatment compared to those before treatment, and the serum CRP and IFN-γ expression levels in the study group were significantly decreased compared to those in the control group. Conclusion Psychological care combined with traditional Chinese medicine in the treatment of advanced cervical cancer patients after surgery was effective in improving patients' psychological status, reducing their pain level, relieving postoperative negative emotions, increasing compliance, improving the quality of life, helping to prolong survival time, and controlling serum indexes back to normal, which was worth promoting in clinical practice.
Collapse
|
24
|
Li G, Peng X, Guo Y, Gong S, Cao S, Qiu F. Currently Available Strategies for Target Identification of Bioactive Natural Products. Front Chem 2021; 9:761609. [PMID: 34660543 PMCID: PMC8515416 DOI: 10.3389/fchem.2021.761609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
In recent years, biologically active natural products have gradually become important agents in the field of drug research and development because of their wide availability and variety. However, the target sites of many natural products are yet to be identified, which is a setback in the pharmaceutical industry and has seriously hindered the translation of research findings of these natural products as viable candidates for new drug exploitation. This review systematically describes the commonly used strategies for target identification via the application of probe and non-probe approaches. The merits and demerits of each method were summarized using recent examples, with the goal of comparing currently available methods and selecting the optimum techniques for identifying the targets of bioactive natural products.
Collapse
Affiliation(s)
- Gen Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuling Peng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajing Guo
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shaoxuan Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shijie Cao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
25
|
Zhang Q, Huang X. The modulatory properties of Astragalus membranaceus treatment on endometrial cancer: an integrated pharmacological method. PeerJ 2021; 9:e11995. [PMID: 34513331 PMCID: PMC8395571 DOI: 10.7717/peerj.11995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022] Open
Abstract
Astragalus membranaceus is a traditional Chinese medicine and has been used for adjuvant clinical therapy for a variety of cancers. However, the mechanism of its action on endometrial carcinoma is unclear. Based on the Gene Expression Omnibus (GEO) database, the Cancer Genome Atlas (TCGA) database, and the Traditional Chinese Medicine System Pharmacology Database (TCMSP™), the drug and target compounds were initially screened to construct a common network module. Twenty active compounds in Astragalus membranaceus were successfully identified, which hit by 463 potential targets related to endometrial cancer. Eight of the more highly predictive compounds (such as Jaranol, Bifendate, Isorhamnetin, Calycosin, 7-O-methylisomucronulatol, Formononetin, Kaempferol, Quercetin) were involved in DNA integrity checkpoint, cyclin-dependent protein kinase holoenzyme complex, and histone kinase activity. Additionally, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway confirmed that Astragalus membranaceus might play a role in the treatment of endometrial cancer through p53 signalling pathway, transcriptional misregulation in cancer, and endometrial cancer signalling pathway. Drug-target-pathway networks were constructed using Cytoscape to provide a visual perspective. In addition, we verified that formononetin inhibited the proliferation of endometrial cancer cells through cell viability tests and clone formation tests. And qPCR and western blot found that formononetin exerts anti-cancer effects by promoting the expression of estrogen receptor beta (ERβ) and p53. Based on a systematic network pharmacology approach, our works successfully predict the active ingredients and potential targets of Astragalus membranaceus for application to endometrial cancer and helps to illustrate mechanism of action on a comprehensive level.
Collapse
Affiliation(s)
- Qianqian Zhang
- Department of Gynecology, Hebei Medical University Second Affiliated Hospital, Shijiazhuang, China
| | - Xianghua Huang
- Department of Gynecology, Hebei Medical University Second Affiliated Hospital, Shijiazhuang, China
| |
Collapse
|
26
|
Zheng Q, Zhang J, Zhang T, Liu Y, Du X, Dai X, Gu D. Hsa_circ_0000520 overexpression increases CDK2 expression via miR-1296 to facilitate cervical cancer cell proliferation. J Transl Med 2021; 19:314. [PMID: 34284793 PMCID: PMC8290540 DOI: 10.1186/s12967-021-02953-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/19/2021] [Indexed: 01/04/2023] Open
Abstract
Background Circular RNA (circRNA) has been demonstrated to participate in cervical cancer development. In this study, we analyzed the role of hsa_circ_0000520 in cervical cancer. Methods Fifty-two pairs of cervical cancer and adjacent normal tissue samples were collected, and five human cervical cancer cell lines were obtained followed by the detection of hsa_circ_0000520 expression. Nuclear-cytoplasmic isolation and fluorescence in situ hybridization were performed to analyze the subcellular localization of hsa_circ_0000520 while linear RNA was digested by RNase R. Gain- or loss-of function experiments on hsa_circ_0000520 were performed, followed by detection of cell proliferation and cell cycle by EdU, Cell Counting Kit-8, colony formation assay, and flow cytometry respectively. Results Hsa_circ_0000520 and cyclin-dependent kinase 2 (CDK2) were highly expressed in cervical cancer tissues. Binding sites between microRNA-1296 (miR-1296) and hsa_circ_0000520 or CDK2 were verified. Antibody to Argonaute 2 (Ago2) could precipitate hsa_circ_0000520, indicating that hsa_circ_0000520 could competitively bind to miR-1296 via Ago2. Silencing hsa_circ_0000520 inhibited cervical cancer cell proliferation and promoted the inhibitory effects of miR-1296 on CDK2, thereby blocking cell cycle progression and promoting apoptosis. Conclusion These results support the premise that targeting hsa_circ_0000520 can be a potential approach to combat cervical cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02953-9.
Collapse
Affiliation(s)
- Qingling Zheng
- Department of Obstetrics and Gynecology, School of Medicine, Huzhou University, Huzhou, 313000, People's Republic of China
| | - Jin Zhang
- Department of Pathology, Suzhou Science & Technology Town Hospital, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153, Jiangsu, People's Republic of China
| | - Ting Zhang
- Department of Pathology, School of Medicine, Huzhou University, Huzhou, 313000, People's Republic of China
| | - Yanxiang Liu
- Department of Pathology, Suzhou Science & Technology Town Hospital, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153, Jiangsu, People's Republic of China
| | - Xiuluan Du
- Department of Pathology, Suzhou Science & Technology Town Hospital, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153, Jiangsu, People's Republic of China
| | - Xin Dai
- Department of Pathology, Suzhou Science & Technology Town Hospital, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153, Jiangsu, People's Republic of China
| | - Donghua Gu
- Department of Pathology, Suzhou Science & Technology Town Hospital, No. 1, Lijiang Road, Huqiu District, Suzhou, 215153, Jiangsu, People's Republic of China.
| |
Collapse
|
27
|
Li W, Wang S, Wang H, Wang J, Jin F, Fang F, Fang C. Astragaloside IV prevents memory impairment in D-galactose-induced aging rats via the AGEs/RAGE/ NF-κB axis. Arch Med Res 2021; 53:20-28. [PMID: 34217517 DOI: 10.1016/j.arcmed.2021.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/05/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND We investigated the effects of astragaloside IV (AS-IV) on memory function in aging rats mimicked by D-galactose administration and explored the potential molecular mechanisms. METHODS Twenty-seven male rats were randomly divided into control group (N = 9), model group (N = 9), and AS-IV treated group (N = 9). Aging model was stimulated by D-galactose (400 mg/kg/d, i.p., dissolved in saline) for 8 weeks in rats. The general status of the rats was observed weekly. Learning and memory function was determined using the eight-arm radical maze and step-down test. Pathological changes in the hippocampal CA1 region were determined by hematoxylin and eosin staining. Organ indexes, superoxide dismutase (SOD) activity and malonaldehyde (MDA) content in the serum were measured. Expression of advanced glycation end products (AGEs), receptor for AGEs (RAGE), nuclear factor-κB (NF-κB), interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α) were detected by enzyme-linked immunosorbent assay, real-time polymerase chain reaction or western blotting. RESULTS AS-IV improved the general status of the aging rats induced by D-galactose, prevented the impairment of memory function, organ indexes, and the pathological damage of the hippocampus. From the prospective of oxidative stress, AS-IV increased sera SOD activity and decreased MDA content. Additionally, AS-IV also reduced the inflammatory response by reducing hippocampal IL-1β, TNF-α, and IL-6 expression. Importantly, AS-IV prevented D-galactose-induced expression of AGEs, RAGE and NF-κB in the hippocampus. CONCLUSION AS-IV could prevent D-galactose-induced aging and memory impairment in rats, likely via regulation of inflammatory response, which was modulated by AGEs/RAGE/NF-κB axis.
Collapse
Affiliation(s)
- Wei Li
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Shuo Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Hao Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Jiepeng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Feng Jin
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Chaoyi Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050200, China; Hebei Key Laboratory of Chinese Medicine Research on Cardio-cerebrovascular Disease, Shijiazhuang 050091, China.
| |
Collapse
|
28
|
Chen T, Yang P, Jia Y. Molecular mechanisms of astragaloside‑IV in cancer therapy (Review). Int J Mol Med 2021; 47:13. [PMID: 33448320 PMCID: PMC7834967 DOI: 10.3892/ijmm.2021.4846] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
Radix Astragali (RA) is widely used in traditional Chinese medicine (TCM), and astragaloside IV (AS-IV) is the most critical component of RA. Previous studies have demonstrated that AS-IV exerts effects on the myocardium, nervous system and endocrine system, among others. In the present review article, data from studies conducted over the past 20 years were collated, which have evaluated the effects of AS-IV on tumors. The mechanisms of action of AS-IV on malignant cells both in vivo and in vitro were summarized and it was demonstrated that AS-IV plays a vital role, particularly in inhibiting tumor growth and metastasis, promoting the apoptosis of tumor cells, enhancing immune function and preventing drug resistance. Moreover, AS-IV controls several epithelial-mesenchymal transformation (EMT)-related and autophagy-related pathways, such as the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wnt/β-catenin, mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinase (ERK) and transforming growth factor-β (TGF-β)/SMAD signaling pathways, which are commonly affected in the majority of tumors. The present review provides new perspectives on the functions of AS-IV and its role as an adjuvant treatment in cancer chemotherapy.
Collapse
Affiliation(s)
- Tianqi Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| |
Collapse
|