1
|
Samanta S, Roy J, Debnath B, Ljungman M, Neamati N. PSP205, a Novel Phenyl Sulfonyl Piperidine, Induces Apoptotic Cell Death in Colon Cancer by Modulating Coat Protein Complex-Mediated Vesicle Trafficking. ACS Pharmacol Transl Sci 2025; 8:1072-1086. [PMID: 40242573 PMCID: PMC11997887 DOI: 10.1021/acsptsci.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 04/18/2025]
Abstract
The endoplasmic reticulum (ER) stress and autophagic pathways offer attractive targets for the development of new cancer drugs. Here, we identified a novel phenyl sulfonyl piperidine, PSP205, that induces prolonged ER-stress-mediated autophagy and apoptosis in colon cancer cells. Transcriptome analysis of cells exposed to PSP205 unveiled transcriptional upregulation of genes associated with the ER stress response or unfolded protein response (UPR), in addition to vesicle transport. Among the top upregulated genes, DNAJB9, XBP1, PDIA4, HSPA5, SEC24D, and SEC11C are implicated in ER stress. Gene set enrichment analysis revealed the enrichment of gene sets involved in the UPR, mTORC1 signaling, hypoxia, the P53 pathway, apoptosis, and the ER-Golgi-vesicle-mediated transport pathway. Mechanistic studies showed that PSP205 acts on the IRE1-TRAF2-JNK pathway to modulate autophagic flux, leading to macroautophagy, ER-phagy, and deformation of Golgi. Our study also demonstrated that PSP205 decreases the expression of the COPI coat complex subunit beta 2 (COPB2) in the presence of COPB2 siRNA. Furthermore, PSP205 synergistically killed colon cancer cells in combination with proteasome and topoisomerase inhibitors. Cumulatively, our findings suggest that PSP205 targets cancer cells via a novel mechanism, specifically by decreasing the level of COPB2, which has not been extensively studied in the context of cancer therapy development and warrants further investigation.
Collapse
Affiliation(s)
- Soma Samanta
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Joyeeta Roy
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bikash Debnath
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mats Ljungman
- Department
of Radiation Oncology, Rogel Cancer Center, and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Reyes SJ, Lemire L, Durocher Y, Voyer R, Henry O, Pham PL. Investigating the metabolic load of monoclonal antibody production conveyed to an inducible CHO cell line using a transfer-rate online monitoring system. J Biotechnol 2025; 399:47-62. [PMID: 39828082 DOI: 10.1016/j.jbiotec.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Shake flasks are a foundational tool in early process development by allowing high throughput exploration of the design space. However, lack of online data at this scale can hamper rapid decision making. Oxygen transfer rate (OTR) monitoring has been readily applied as an online process characterization tool at the benchtop bioreactor scale. Recent advances in modern sensing technology have allowed OTR monitoring to be available at the shake flask level. It is now possible to multiplex time-of-action (e.g., Induction, temperature shift, pH shift, feeding initiation, point of harvest) characterization studies by relying on careful analysis of OTR profile kinetics. As a result, there is potential to save time and capital expenditures while exploring process intensification studies though accurate and physiologically relevant online data. In this article, we detail the application of OTR monitoring to characterize the impact that recombinant protein production has on an inducible CHO cell line expressing Palivizumab. We then test out time-of-action studies to intensify protein production outcomes. We observe that recombinant protein expression causes a metabolic load that diminishes potential biomass growth. As a result, when compared to a control standard process, delaying induction and temperature shift has the potential to improve viable cell densities (VCD) by 2-fold thus increasing recombinant protein yield by over 30 %. The study also demonstrates that OTR can serve as a useful tool to detect cessation of exponential growth. Consequently, time-of-action points that are characteristic of inducible systems can be formulated accurately and reliably to maximize production performance.
Collapse
Affiliation(s)
- Sebastian-Juan Reyes
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Lucas Lemire
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Robert Voyer
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada.
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada.
| |
Collapse
|
3
|
Sosunov AA, McKhann Ii G, Tang G, Goldman JE. Cytoplasmic vacuolization and ectopic formation of perineuronal nets are characteristic pathologies of cytomegalic neurons in tuberous sclerosis. J Neuropathol Exp Neurol 2024; 83:1047-1059. [PMID: 39024216 DOI: 10.1093/jnen/nlae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Cytomegalic neurons, characterized by increased size and a hyperactive mechanistic target of rapamycin complex 1 (mTORC1), are pathognomonic for tuberous sclerosis complex (TSC). To model these neurons, we recently generated a murine Tsc1 conditional knockout model in which Tsc1 deletion in late embryonic radial glia results in neuronal hypertrophy of a subset of isocortical pyramidal neurons. In the current study, we compared the cellular pathology of these cytomegalic neurons to those of the enlarged neurons in human cortical tubers. Neurons from the mice showed unique features, such as cytoplasmic vacuoles associated with Golgi complexes and the ectopic formation of perineuronal nets (PNNs), a feature of inhibitory neurons, rarely present in excitatory cortical neurons. The membranes of these vacuoles were enriched for the plasma membrane proteins CD44, KCC2, and Na+/K+ ATPase, suggesting deficits in Golgi membrane trafficking. These aberrant features in the mouse appeared only after the onset of seizures, probably due to the prolonged seizure activity in the context of constitutive mTORC1 activation. Similar PNNs and cytoplasmic vacuoles were present in the cytomegalic neurons of human cortical tubers. Our findings reveal novel pathological features of Golgi complexes and PNNs in the cytomegalic neurons in TSC.
Collapse
Affiliation(s)
- Alexander A Sosunov
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Guy McKhann Ii
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY, United States
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, United States
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
4
|
Sultana J, Ragagnin AMG, Parakh S, Saravanabavan S, Soo KY, Vidal M, Jagaraj CJ, Ding K, Wu S, Shadfar S, Don EK, Deva A, Nicholson G, Rowe DB, Blair I, Yang S, Atkin JD. C9orf72-Associated Dipeptide Repeat Expansions Perturb ER-Golgi Vesicular Trafficking, Inducing Golgi Fragmentation and ER Stress, in ALS/FTD. Mol Neurobiol 2024; 61:10318-10338. [PMID: 38722513 PMCID: PMC11584443 DOI: 10.1007/s12035-024-04187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2024] [Indexed: 11/24/2024]
Abstract
Hexanucleotide repeat expansions (HREs) in the chromosome 9 open reading frame 72 (C9orf72) gene are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both are debilitating neurodegenerative conditions affecting either motor neurons (ALS) in the brain and spinal cord or neurons in the frontal and/or temporal cortical lobes (FTD). HREs undergo repeat-associated non-ATG (RAN) translation on both sense and anti-sense strands, generating five distinct dipeptide repeat proteins (DPRs), poly-GA, -GR, -GP, -PA and -PR. Perturbed proteostasis is well-recognised in ALS pathogenesis, including processes affecting the endoplasmic reticulum (ER) and Golgi compartments. However, these mechanisms have not been well characterised for C9orf72-mediated ALS/FTD. In this study we demonstrate that C9orf72 DPRs polyGA, polyGR and polyGP (× 40 repeats) disrupt secretory protein transport from the ER to the Golgi apparatus in neuronal cells. Consistent with this finding, these DPRs also induce fragmentation of the Golgi apparatus, activate ER stress, and inhibit the formation of the omegasome, the precursor of the autophagosome that originates from ER membranes. We also demonstrate Golgi fragmentation in cells undergoing RAN translation that express polyGP. Furthermore, dysregulated ER-Golgi transport was confirmed in C9orf72 patient dermal fibroblasts. Evidence of aberrant ER-derived vesicles in spinal cord motor neurons from C9orf72 ALS patients compared to controls was also obtained. These data thus confirm that ER proteostasis and ER-Golgi transport is perturbed in C9orf72-ALS in the absence of protein over-expression. Hence this study identifies novel molecular mechanisms associated with the ER and Golgi compartments induced by the C9orf72 HRE.
Collapse
Affiliation(s)
- Jessica Sultana
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Audrey M G Ragagnin
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sonam Parakh
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kai Ying Soo
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Marta Vidal
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cyril Jones Jagaraj
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kunjie Ding
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sharlynn Wu
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Emily K Don
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anand Deva
- Department of Plastic and Reconstructive Surgery, and The Integrated Specialist Healthcare Education and Research Foundation, Macquarie University, Sydney, Australia
| | - Garth Nicholson
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, NSW, Australia
| | - Dominic B Rowe
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian Blair
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shu Yang
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
5
|
Gomes NA, Lima e Silva FDC, de Oliveira Volpe CM, Villar-Delfino PH, de Sousa CF, Rocha-Silva F, Nogueira-Machado JA. Overexpression of mTOR in Leukocytes from ALS8 Patients. Curr Neuropharmacol 2023; 21:482-490. [PMID: 36722478 PMCID: PMC10207909 DOI: 10.2174/1570159x21666230201151016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The mutated VAPBP56S (vesicle B associated membrane protein - P56S) protein has been described in a Brazilian family and classified as Amyotrophic Lateral Sclerosis type 8 (ALS8). OBJECTIVE We aimed to study altered biochemical and immunological parameters in cells from ALS8 patients to identify possible biomarkers or therapeutic targets. METHODS Wild-type VAPB, VAPBP56S, mTOR, proinflammatory cytokines, and oxidant/reducing levels in serum, leucocytes, and cellular lysate from ALS8 patients and health Controls were performed by ELISA, fluorimetry, and spectrophotometry. RESULTS Our results showed similar levels of mutant and wild-type VAPB in serum and intracellular lysate (p > 0.05) when ALS8 patients and Controls were compared. IL-1β, IL-6, and IL-18 levels in patients and Controls showed no difference, suggesting an absence of peripheral inflammation (p > 0.05). Oxidative metabolic response, assessed by mitochondrial ROS production, and reductive response by MTT reduction, were higher in the ALS8 group compared to Controls (p < 0.05), although not characterizing typical oxidative stress in ALS8 patients. Total mTOR levels (phosphorylated or non-phosphorylated) of ALS8 patients were significantly lower in serum and higher in intracellular lysate than the mean equivalents in Controls (p < 0.05). A similar result was observed when we quantified the phosphorylated protein (p < 0.05). CONCLUSION We demonstrate the possibility of using these biochemical and immunological parameters as potential therapeutic targets or biomarkers. Furthermore, by hypothesis, we suggest a hormetic response in which both VAPB forms could coexist in different proportions throughout life. The mutated VAPBP56S production would increase with aging and predominate over the wild-type VAPB levels, determining the onset of symptoms and aggravating the disease.
Collapse
Affiliation(s)
- Nathália Augusta Gomes
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | | | - Caroline Maria de Oliveira Volpe
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Henrique Villar-Delfino
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Ferreira de Sousa
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - Fabiana Rocha-Silva
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| | - José Augusto Nogueira-Machado
- Programa de Pós-Graduação Stricto Sensu em Medicina/Biomedicina, Faculdade Santa Casa de BH, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Tang YC, Powell RT, Gottlieb A. Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts. Sci Rep 2022; 12:16109. [PMID: 36168036 PMCID: PMC9515168 DOI: 10.1038/s41598-022-20646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predicting models from large-scale cancer cell lines to both tumors and patient derived xenografts based on molecular pathways derived from genomic features. We further compute feature importance to identify pathways most important to drug response prediction. We obtained good performance on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers (RMSE = 0.11). Using feature importance, we highlight the association between ER-Golgi trafficking pathway in everolimus sensitivity within breast cancer patients and the role of class II histone deacetylases and interlukine-12 in response to drugs for triple-negative breast cancer. Pathway information support transfer of drug response prediction models from cell lines to tumors and can provide biological interpretation underlying the predictions, serving as a steppingstone towards usage in clinical setting.
Collapse
Affiliation(s)
- Yi-Ching Tang
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Reid T. Powell
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Texas A&M University, Houston, TX 77030 USA
| | - Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Genetic disorders of cellular trafficking. Trends Genet 2022; 38:724-751. [DOI: 10.1016/j.tig.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|