1
|
Zhang D, Qu X, Chu F, Wang Z, Mou J, Yuan F. Regulation of macrophage-mediated osteogenesis by kaempferol liposomes in trauma-induced heterotopic ossification. Int J Pharm 2025; 671:125226. [PMID: 39842743 DOI: 10.1016/j.ijpharm.2025.125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Heterotopic ossification (HO) is characterized by abnormal bone formation outside the skeleton following injury or inherited disease, leading to limb dysfunction and neurological deficits. Current treatment options for HO are largely ineffective. METHODS A network pharmacological analysis was conducted to identify the active ingredients and protein targets in Astragalus and Cinnamon Twig Five-Substance Decoction (ACTFSD) on HO. Protein-protein interaction analysis and Gene Ontology Enrichment Analysis were used to investigate the key genes associated with the target proteins. Molecular docking was employed to validate the interactions between the core components and targets of ACTFSD. Kaempferol was encapsulated in liposomes synthesized via the thin-film dispersion method. In vitro and in vivo experiments were conducted to evaluate the therapeutic effects of kaempferol liposomes. RESULTS Kaempferol, an active ingredient in ACTFSD, effectively inhibits the PTGS2\ NF-κB pathway, regulates macrophage immune responses, and reduces cytokine released by macrophages induce abnormal osteogenesis in tendon stem cells (TDSCs), thereby slowing the formation of HO. Kaempferol liposomes demonstrate better therapeutic effect than kaempferol alone. CONCLUSION This study indicates that targeting macrophages may represent an effective therapeutic strategy for HO. Furthermore, kaempferol liposomes appear to be a promising treatment for trauma-induced HO. These findings provide potential new directions for future HO treatment strategies.
Collapse
Affiliation(s)
- Dazhen Zhang
- Key Laboratory of Bone Tissue Regeneration and Digital Medicine, Xuzhou Medical University, Xuzhou 221006 Jiangsu, China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006 Jiangsu, China; Xuzhou Medical University, Xuzhou 221006 Jiangsu, China
| | - Xinzhe Qu
- Key Laboratory of Bone Tissue Regeneration and Digital Medicine, Xuzhou Medical University, Xuzhou 221006 Jiangsu, China; Xuzhou Medical University, Xuzhou 221006 Jiangsu, China
| | - Fuchao Chu
- Key Laboratory of Bone Tissue Regeneration and Digital Medicine, Xuzhou Medical University, Xuzhou 221006 Jiangsu, China; Department of Orthopedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006 Jiangsu, China
| | - Zhenxin Wang
- Key Laboratory of Bone Tissue Regeneration and Digital Medicine, Xuzhou Medical University, Xuzhou 221006 Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221006 Jiangsu, China.
| | - Feng Yuan
- Key Laboratory of Bone Tissue Regeneration and Digital Medicine, Xuzhou Medical University, Xuzhou 221006 Jiangsu, China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006 Jiangsu, China.
| |
Collapse
|
2
|
Li JX, Dang YM, Liu MC, Gao LQ, Lin H. Fibroblasts in heterotopic ossification: mechanisms and therapeutic targets. Int J Biol Sci 2025; 21:544-564. [PMID: 39781450 PMCID: PMC11705629 DOI: 10.7150/ijbs.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/07/2024] [Indexed: 01/12/2025] Open
Abstract
Heterotopic ossification (HO) refers to the abnormal formation of bone in non-skeletal tissues. Fibroblasts have traditionally been viewed as stationary cells primarily responsible for producing extracellular matrix during tissue repair and fibrosis. However, recent discoveries regarding their plasticity-encompassing roles in inflammation, extracellular matrix remodeling, and osteogenesis-highlight their potential as key contributors to the development of HO. In this review, we systematically summarize the diverse phenotypic and functional plasticity of fibroblasts in HO. Furthermore, we evaluate the possible interaction between fibroblasts and macrophages in pathophysiological processes and signaling pathways. Finally, we highlight the potential strategies for preventing and treating HO by targeting fibroblast activities.
Collapse
Affiliation(s)
- Jia-xin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- First Clinical School, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Yan-miao Dang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Meng-chao Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Lin-qing Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Hui Lin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| |
Collapse
|
3
|
Liu W, Huang J, Hu J, Bu Z, Zhou Z, Yu J, Wang H, Wu X, Wu P. The dual role of CCND1 in heterotopic ossification: A Non-canonical Pathway for Celecoxib treatment. Heliyon 2024; 10:e34936. [PMID: 39157338 PMCID: PMC11327559 DOI: 10.1016/j.heliyon.2024.e34936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Objective To explore the effective targets of Celecoxib in the treatment of heterotopic ossification using network pharmacology methods. Methods Potential molecules related to heterotopic ossification were obtained by retrieving the GEO and CTD databases and intersecting them. Potential binding targets of Celecoxib were acquired from the STITCH database. A protein-protein interaction network was constructed between potential binding targets of Celecoxib and potential related molecules of heterotopic ossification using the STRING database. Molecules in the protein-protein interaction network were further analyzed using GO and KEGG enrichment analysis in R software, followed by enrichment analysis of active molecules in the Celecoxib-heterotopic ossification target dataset. Hub genes were selected based on the "degree" value and enrichment within the protein-protein interaction network. The binding affinity of hub genes to Celecoxib was observed using molecular docking techniques. Finally, in vitro experiments were conducted to validate the effectiveness of hub genes and explore their regulatory role in the progression of heterotopic ossification. Additionally, the therapeutic effect of Celecoxib, which modulates the expression of the hub genes, was investigated in the treatment of heterotopic ossification. Results 568 potential molecules related to heterotopic ossification and 76 potential binding targets of Celecoxib were identified. After intersection, 13 potential functional molecules in Celecoxib's treatment of heterotopic ossification were obtained. KEGG analysis suggested pathways such as Rheumatoid arthritis, NF-kappa B signaling pathway, Pathways in cancer, Antifolate resistance, MicroRNAs in cancer play a role in the treatment of heterotopic ossification by Celecoxib. Further enrichment analysis of the 13 potential functional molecules identified 5 hub genes: IL6, CCND1, PTGS2, IGFBP3, CDH1. Molecular docking results indicated that Celecoxib displayed excellent binding affinity with CCND1 among the 5 hub genes. Experimental validation found that CCND1 is highly expressed in the progression of heterotopic ossification, promoting heterotopic ossification in the early stages and inhibiting it in the later stages, with Celecoxib's treatment of heterotopic ossification depending on CCND1. Conclusion In the process of treating heterotopic ossification with Celecoxib, immune and inflammatory signaling pathways play a significant role. The therapeutic effect of Celecoxib on heterotopic ossification depends on the hub gene CCND1, which plays different roles at different stages of the progression of heterotopic ossification, ultimately inhibiting the occurrence of heterotopic ossification.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Junchao Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jianhai Hu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ziheng Bu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zheng Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jianing Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Huajun Wang
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative Medicine, State Key Laboratory of Frigid Zone Cardiovascular Diseases, Jinan University, Guangzhou, 510630, China
| | - Xinbo Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| |
Collapse
|
4
|
Zhao X, Xu H. Heterotopic ossification of the elbow joint in a child: Successful surgical resection - A case report. Heliyon 2024; 10:e33756. [PMID: 39040294 PMCID: PMC11261891 DOI: 10.1016/j.heliyon.2024.e33756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Background This case report describes the occurrence of a rare heterotopic ossification of the elbow joint in a child, caused by inappropriate movement after trauma. A successful operation to remove heterotopic ossification was described in the report with satisfactory results. Case presentation A 7-year-old boy suffered a supracondylar fracture of the humerus after an accidental fall, and after immobilization with a cast, improper movement resulted in heterotopic ossification of the elbow joint, which severely affected joint function. The heterotopic ossification was surgically removed and a complete recovery was demonstrated at 18 months follow-up. The heterotopic ossification was successfully removed with good elbow function and no recurrence at 18 months follow-up. Conclusions The purpose of this report is to show the good results with surgical treatment of heterotopic ossification of the elbow joint in children,when conservative treatment does not work.
Collapse
Affiliation(s)
- Xiaolei Zhao
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hongtao Xu
- Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
5
|
Chen C, Song C, Liu B, Wang Y, Jia J, Pang K, Wang Y, Wang P. Activation of BMP4/SMAD pathway by HIF-1α in hypoxic environment promotes osteogenic differentiation of BMSCs and leads to ectopic bone formation. Tissue Cell 2024; 88:102376. [PMID: 38608407 DOI: 10.1016/j.tice.2024.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 03/15/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024]
Abstract
OBJECTIVE Heterotopic ossification (HO), also known as ossifying myositis, is a condition that produces abnormal bone and cartilage tissue in the soft tissues. Hypoxia inducible factor lα (HIF-lα) regulates the expression of various genes, which is closely related to the promotion of bone formation, and Drosophila mothers against decapentaplegic protein (SMAD) mediates the signal transduction in the Bone morphogenetic protein (BMP) signaling pathway, which affects the function of osteoblasts and osteoclasts, and thus plays a key role in the regulation of bone remodeling. We aimed to investigate the mechanism by which HIF-1α induces osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) in a hypoxic environment. METHODS A cellular hypoxia model was constructed to verify the expression of HIF-1α, while alizarin red staining was performed to observe the osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs). Alizarin red staining was used to analyze the late mineralization ability of the cells. Western blot analysis was performed to analyze the expression levels of osteogenesis-related factors OCN, OPN proteins as well as the pathway proteins BMP4, p-Smad1/5/8, and Smad1. We also constructed a rat model of ectopic bone formation, observed ectopic ossification by X-ray, and verified the success of the rat model by ELISA of HIF-1α. HE staining was used to observe the matrix and trabecular structure of bone, and Masson staining was used to observe the collagen and trabecular structure of bone. Immunohistochemistry analyzed the expression of OCN and OPN in ectopic bone tissues, and WB analyzed the expression of pathway proteins BMP4, p-Smad1/5/8 and Smad1 in ectopic bone tissues to verify the signaling pathway of ectopic bone formation. RESULTS Our results indicate that hypoxic environment upregulates HIF-1a expression and activates BMP4/SMAD signaling pathway. This led to an increase in ALP content and enhanced expression of the osteogenesis-related factors OCN and OPN, resulting in enhanced osteogenic differentiation of BMSCs. The results of our in vivo experiments showed that rats inoculated with BMSCs overexpressing HIF-1α showed bony structures in tendon tissues, enhanced expression of the bone signaling pathways BMP4 and p-Smad1/5/8, and enhanced expression levels of the osteogenic-related factors OCN and OPN, resulting in the formation of ectopic bone. CONCLUSIONS These data further suggest a novel mechanistic view that hypoxic bone marrow BMSCs activate the BMP4/SMAD pathway by up-regulating the expression level of HIF-1α, thereby promoting the secretion of osteogenic factors leading to ectopic bone formation.
Collapse
Affiliation(s)
- Cong Chen
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Chunhao Song
- Department of Medical Imaging, Weihai Wendeng District People Hospital, Weihai 264200, China
| | - Bo Liu
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Yitao Wang
- Department of Laboratory, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Jun Jia
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Kai Pang
- Department of Operations Management, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Yuanhao Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China
| | - Peng Wang
- Department of Spine Surgery, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai 264200, China.
| |
Collapse
|
6
|
Kaliya-Perumal AK, Celik C, Carney TJ, Harris MP, Ingham PW. Genetic regulation of injury-induced heterotopic ossification in adult zebrafish. Dis Model Mech 2024; 17:dmm050724. [PMID: 38736327 DOI: 10.1242/dmm.050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/14/2024] Open
Abstract
Heterotopic ossification is the inappropriate formation of bone in soft tissues of the body. It can manifest spontaneously in rare genetic conditions or as a response to injury, known as acquired heterotopic ossification. There are several experimental models for studying acquired heterotopic ossification from different sources of damage. However, their tenuous mechanistic relevance to the human condition, invasive and laborious nature and/or lack of amenability to chemical and genetic screens, limit their utility. To address these limitations, we developed a simple zebrafish injury model that manifests heterotopic ossification with high penetrance in response to clinically emulating injuries, as observed in human myositis ossificans traumatica. Using this model, we defined the transcriptional response to trauma, identifying differentially regulated genes. Mutant analyses revealed that an increase in the activity of the potassium channel Kcnk5b potentiates injury response, whereas loss of function of the interleukin 11 receptor paralogue (Il11ra) resulted in a drastically reduced ossification response. Based on these findings, we postulate that enhanced ionic signalling, specifically through Kcnk5b, regulates the intensity of the skeletogenic injury response, which, in part, requires immune response regulated by Il11ra.
Collapse
Affiliation(s)
- Arun-Kumar Kaliya-Perumal
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive 636921, Singapore
| | - Cenk Celik
- Department of Genetics, Evolution and Environment, Genetics Institute, University College London, London WC1E 6BT, UK
| | - Tom J Carney
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive 636921, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos 138673, Singapore
| | - Matthew P Harris
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Orthopedic Research, Boston Children's Hospital, Boston, MA 02115, USA
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive 636921, Singapore
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
7
|
Rowe CJ, Nwaolu U, Salinas D, Lansford JL, McCarthy CF, Anderson JA, Valerio MS, Potter BK, Spreadborough PJ, Davis TA. Cutaneous burn injury represents a major risk factor for the development of traumatic ectopic bone formation following blast-related extremity injury. Bone 2024; 181:117029. [PMID: 38331307 DOI: 10.1016/j.bone.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/09/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Blast-related traumatic heterotopic ossification (tHO) impacts clinical outcomes in combat-injured patients, leading to delayed wound healing, inflammatory complications, and reduced quality of life. Blast injured patients often have significant burns. This study investigated whether a partial thickness thermal burn injury exacerbates blast-related tHO in a clinically relevant polytrauma animal model. Adult male Sprague Dawley rats were subjected to an established model involving a whole-body blast overpressure exposure (BOP), complex extremity trauma followed by hind limb amputation (CET) followed by the addition of a 10 % total body surface area (TBSA) second degree thermal burn (BU). Micro-CT scans on post-operative day 56 showed a significant increase in HO volume in the CET + BU as compared to the CET alone injury group (p < .0001; 22.83 ± 3.41 mm3 vs 4.84 ± 5.77 mm3). Additionally, CET + BU concomitant with BOP significantly increased HO (p < .0001; 34.95 ± 7.71 mm3) as compared to CET + BU alone, confirming BOP has a further synergistic effect. No HO was detectable in rats in the absence of CET. Serum analysis revealed similar significant elevated (p < .0001) levels of pro-inflammatory markers (Cxcl1 and Il6) at 6 h post-injury (hpi) in the CET + BU and BOP + CET + BU injury groups as compared to naïve baseline values. Real-time qPCR demonstrated similar levels of chondrogenic and osteogenic gene expression in muscle tissue at the site of injury at 168 hpi in both the CET + BU and BOP+CET + BU injury groups. These results support the hypothesis that a 10 % TBSA thermal burn markedly enhances tHO following acute musculoskeletal extremity injury in the presence and absence of blast overpressure. Furthermore, the influence of BOP on tHO cannot be accounted for either in regards to systemic inflammation induced from remote injury or inflammatory-osteo-chondrogenic expression changes local to the musculoskeletal trauma, suggesting that another mechanism beyond BOP and BU synergistic effects are at play. Therefore, these findings warrant future investigations to explore other mechanisms by which blast and burn influence tHO, and testing prophylactic measures to mitigate the local and systemic inflammatory effects of these injuries on development of HO.
Collapse
Affiliation(s)
- Cassie J Rowe
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Uloma Nwaolu
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Daniela Salinas
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Jefferson L Lansford
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Conor F McCarthy
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joseph A Anderson
- Comparative Pathology, Department of Laboratory Animal Resources, Uniformed Services University, Bethesda, MD 20814, USA
| | - Michael S Valerio
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Benjamin K Potter
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA
| | - Philip J Spreadborough
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA; Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Thomas A Davis
- Cell Biology and Regenerative Medicine Program, Department of Surgery, Uniformed Services University, Bethesda, MD 20814, USA.
| |
Collapse
|
8
|
Mao D, Wang K, Jiang H, Mi J, Pan X, Zhao G, Rui Y. Suppression of Overactive Insulin-Like Growth Factor 1 Attenuates Trauma-Induced Heterotopic Ossification in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:430-446. [PMID: 38101566 DOI: 10.1016/j.ajpath.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/31/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Heterotopic ossification (HO) is the ectopic bone formation in soft tissues. Aside from hereditary HO, traumatic HO is common after orthopedic surgery, combat-related injuries, severe burns, or neurologic injuries. Recently, mammalian target of rapamycin (mTOR) was demonstrated to be involved in the chondrogenic and osteogenic processes of HO formation. However, its upstream signaling mechanism remains unknown. The current study used an Achilles tendon puncture-induced HO model to show that overactive insulin-like growth factor 1 (IGF-1) was involved in the progression of HO in mice. Micro-computed tomography imaging showed that IGF-1 not only accelerated the rate of osteogenesis and increased ectopic bone volume but also induced spontaneous ectopic bone formation in undamaged Achilles tendons. Blocking IGF-1 activity with IGF-1 antibody or IGF-1 receptor inhibitor picropodophyllin significantly inhibited HO formation. Mechanistically, IGF-1/IGF-1 receptor activates phosphatidylinositol 3-kinase (PI3K)/Akt signaling to promote the phosphorylation of mTOR, resulting in the chondrogenic and osteogenic differentiation of tendon-derived stem cells into chondrocytes and osteoblasts in vitro and in vivo. Inhibitors of PI3K (LY294002) and mTOR (rapamycin) both suppressed the IGF-1-stimulated mTOR signal and mitigated the formation of ectopic bones significantly. In conclusion, these results indicate that IGF-1 mediated the progression of traumatic HO through PI3K/Akt/mTOR signaling, and suppressing IGF-1 signaling cascades attenuated HO formation, providing a promising therapeutic strategy targeting HO.
Collapse
Affiliation(s)
- Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Kai Wang
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China; Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - Hong Jiang
- Suzhou Medical College of Soochow University, Soochow University, Suzhou, China; Department of Hand Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Jingyi Mi
- Department of Sports Medicine, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xiaoyun Pan
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Gang Zhao
- Department of Hand Surgery, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China.
| | - Yongjun Rui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China; Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China.
| |
Collapse
|
9
|
Burdick LN, DelVichio AH, Hanson LR, Griffith BB, Bouchard KR, Hunter JW, Goldhamer DJ. Sex as a Critical Variable in Basic and Pre-Clinical Studies of Fibrodysplasia Ossificans Progressiva. Biomolecules 2024; 14:177. [PMID: 38397414 PMCID: PMC10886767 DOI: 10.3390/biom14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Heterotopic ossification (HO) is most dramatically manifested in the rare and severely debilitating disease, fibrodysplasia ossificans progressiva (FOP), in which heterotopic bone progressively accumulates in skeletal muscles and associated soft tissues. The great majority of FOP cases are caused by a single amino acid substitution in the type 1 bone morphogenetic protein (BMP) receptor ACVR1, a mutation that imparts responsiveness to activin A. Although it is well-established that biological sex is a critical variable in a range of physiological and disease processes, the impact of sex on HO in animal models of FOP has not been explored. We show that female FOP mice exhibit both significantly greater and more variable HO responses after muscle injury. Additionally, the incidence of spontaneous HO was significantly greater in female mice. This sex dimorphism is not dependent on gonadally derived sex hormones, and reciprocal cell transplantations indicate that apparent differences in osteogenic activity are intrinsic to the sex of the transplanted cells. By circumventing the absolute requirement for activin A using an agonist of mutant ACVR1, we show that the female-specific response to muscle injury or BMP2 implantation is dependent on activin A. These data identify sex as a critical variable in basic and pre-clinical studies of FOP.
Collapse
Affiliation(s)
- Lorraine N. Burdick
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Amanda H. DelVichio
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - L. Russell Hanson
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Brenden B. Griffith
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Keith R. Bouchard
- Alexion Pharmaceuticals Inc., 100 College Street, New Haven, CT 06510, USA; (K.R.B.); (J.W.H.)
| | - Jeffrey W. Hunter
- Alexion Pharmaceuticals Inc., 100 College Street, New Haven, CT 06510, USA; (K.R.B.); (J.W.H.)
| | - David J. Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| |
Collapse
|
10
|
Kontokostopoulos AP, Gkiatas I, Vasileiadis GI, Flevas D, Tsirigkakis SE, Kosmas D, Kostas-Agnantis I, Pakos E, Gelalis I, Korompilias A. Heterotopic Ossification around the Elbow Revisited. Life (Basel) 2023; 13:2358. [PMID: 38137958 PMCID: PMC10744911 DOI: 10.3390/life13122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/31/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Heterotopic ossification (HO) is the process of ectopic bone formation in the periarticular soft tissues and is usually formed in the elbow, hip and knee joint as a complication of trauma, burns, brain injury or surgical procedures. The development of HO around the elbow joint can cause a severe limitation of range of motion (ROM) and may affect daily activities of the patient. Treatment of ectopic bone formation around the elbow is a challenge for many surgeons. Non-operative treatment usually fails to restore the ROM of the elbow joint; thus, surgery is necessary to restore the function of the joint. In the past, many surgeons suggested that a delayed excision of HO, until maturation of the ectopic bone, is the best option in order to avoid any possible recurrence. However, many authors now suggest that this delay may lead to complications such as muscular atrophy and formation of soft tissue contractures that can cause a greater impairment of elbow function; thus, early excision is a better option and can better restore the elbow ROM. We performed a literature research of articles that investigated which is the best time of HO excision and we also evaluated if the tethering effect of HO can lead to a greater impairment of the elbow function. We found numerous studies suggesting that a limitation in ROM of the elbow can appear from the tethering of the ectopic bone formation and not only from primary HO. Concerning the HO excision, there were no significant differences between patients who underwent delayed and early excision, concerning the recurrence rate of HO around the elbow. Patients who underwent early excision had better restoration of elbow ROM; thus, early excision, combined with a rehabilitation program, is reported to be the best option for these patients.
Collapse
Affiliation(s)
- Aristeidis-Panagiotis Kontokostopoulos
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (I.G.); (S.E.T.); (D.K.); (I.K.-A.); (E.P.); (I.G.); (A.K.)
| | - Ioannis Gkiatas
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (I.G.); (S.E.T.); (D.K.); (I.K.-A.); (E.P.); (I.G.); (A.K.)
| | - George I. Vasileiadis
- Department of Physical Medicine and Rehabilitation, School of Medicine, University Hospital of Ioannina, 451 10 Ioannina, Greece;
| | - Dimitrios Flevas
- Arthroscopy & Orthopaedic Surgery Department, Metropolitan Hospital, Neo Faliro, 185 47 Pireas, Greece;
| | - Spyridon E. Tsirigkakis
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (I.G.); (S.E.T.); (D.K.); (I.K.-A.); (E.P.); (I.G.); (A.K.)
| | - Dimitrios Kosmas
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (I.G.); (S.E.T.); (D.K.); (I.K.-A.); (E.P.); (I.G.); (A.K.)
| | - Ioannis Kostas-Agnantis
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (I.G.); (S.E.T.); (D.K.); (I.K.-A.); (E.P.); (I.G.); (A.K.)
| | - Emilios Pakos
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (I.G.); (S.E.T.); (D.K.); (I.K.-A.); (E.P.); (I.G.); (A.K.)
| | - Ioannis Gelalis
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (I.G.); (S.E.T.); (D.K.); (I.K.-A.); (E.P.); (I.G.); (A.K.)
| | - Anastasios Korompilias
- Department of Orthopaedic Surgery, School of Medicine, University of Ioannina, 451 10 Ioannina, Greece; (I.G.); (S.E.T.); (D.K.); (I.K.-A.); (E.P.); (I.G.); (A.K.)
| |
Collapse
|
11
|
Han X, Gao C, Lu W, Yan J, Xu H, Guo Z, Qin W, Lu N, Gao J, Zhu W, Fu Y, Jiao K. Macrophage-Derived Extracellular DNA Initiates Heterotopic Ossification. Inflammation 2023; 46:2225-2240. [PMID: 37458919 DOI: 10.1007/s10753-023-01873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/17/2023] [Accepted: 07/04/2023] [Indexed: 11/25/2023]
Abstract
Heterotopic ossification (HO) severely affects people's lives; however, its pathological mechanism remains poorly understood. Although extracellular DNA (ecDNA) has been shown to play important roles in pathological calcification, its effects in HO development and progression remain unknown. The in vivo rat Achilles tendon injury model and in vitro collagen I calcification model were used to evaluate the effects of ecDNA in the ectopic calcifications and the main cell types involved in those pathological process. Histology, immunofluorescent staining, reverse transcriptase-polymerase chain reaction analysis and micro-computed tomography were used to identify the distribution of macrophage-derived ecDNA and elucidate their roles in HO. The results showed that the amount of ecDNA and ectopic calcification increased significantly and exhibited a strong correlation in the injured tendons of HO model compared with those of the controls, which was accompanied by a significantly increased number of M2 macrophages in the injured tendon. During in vitro co-culture experiments, M2 macrophages calcified the reconstituted type I collagen and ectopic bone collected from the injured tendons of HO rats, while those effects were inhibited by deoxyribonuclease. More importantly, deoxyribonuclease reversed the pathological calcification in the injured rat tendon HO model. The present study showed that ecDNA from M2 macrophages initiates pathological calcification in HO, and the elimination of ecDNA might be developed into a clinical strategy to prevent ectopic mineralization diseases. The use of deoxyribonuclease for the targeted degradation of ecDNA at affected tissue sites provides a potential solution to treat diseases associated with ectopic mineralization.
Collapse
Affiliation(s)
- Xiaoxiao Han
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Changhe Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Weicheng Lu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jianfei Yan
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haoqing Xu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Zhenxing Guo
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenpin Qin
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Naining Lu
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jialu Gao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Weiwei Zhu
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Yutong Fu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China
- The College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Kai Jiao
- Department of Stomatology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China.
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
12
|
Godleski M, Yelvington M, Jean S. Burn Injury Complications Impacting Rehabilitation. Phys Med Rehabil Clin N Am 2023; 34:799-809. [PMID: 37806698 DOI: 10.1016/j.pmr.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Successful post-burn rehabilitation requires an understanding of a wide range of complications to maximize functional recovery. This article reviews a range of potential challenges including burn scar contracture, amputation, peripheral nerve injury, heterotopic ossification, dysphagia, altered skin physiology, pain, and pruritis. The overall focus is to serve as a guide for post-injury therapy and rehabilitation spanning the phases of care and considering evidence-based approaches, prevention, and treatment with an ultimate goal of aiding in the functional recovery and long-term quality of life for burn survivors.
Collapse
Affiliation(s)
- Matthew Godleski
- Department of Physical Medicine and Rehabilitation, Sunnybrook Health Sciences Centre, University of Toronto, St. John's Rehab, 285 Cummer Avenue, Toronto, Ontario M2M 2G1, Canada.
| | - Miranda Yelvington
- Department of Rehabilitation, Arkansas Children's Hospital, 1 Children's Way, Slot 104, Little Rock, AR 72202, USA
| | - Stephanie Jean
- Department of Physical Medicine and Rehabilitation, Institut de Réadaptation Gingras-Lindsay de Montréal (Darlington), Université de Montréal, 6300 Avenue Darlington, Montréal, Québec H3S 2J4, Canada
| |
Collapse
|
13
|
Yang J, Zhang X, Lu B, Mei J, Xu L, Zhang X, Su Z, Xu W, Fang S, Zhu C, Xu D, Zhu W. Inflammation-Responsive Hydrogel Spray for Synergistic Prevention of Traumatic Heterotopic Ossification via Dual-Homeostatic Modulation Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302905. [PMID: 37635177 PMCID: PMC10602522 DOI: 10.1002/advs.202302905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/31/2023] [Indexed: 08/29/2023]
Abstract
Traumatic heterotopic ossification (THO) represents one of the most prominent contributors to post-traumatic joint dysfunction, which currently lacks an effective and definitive preventative approach. Inflammatory activation due to immune dyshomeostasis during the early stages of trauma is believed to be critical in initiating the THO disease process. This study proposes a dual-homeostatic modulation (DHM) strategy to synergistically prevent THO without compromising normal trauma repair by maintaining immune homeostasis and inducing stem cell homeostasis. A methacrylate-hyaluronic acid-based hydrogel spray device encapsulating a curcumin-loaded zeolitic imidazolate framework-8@ceric oxide (ZIF-8@CeO2, CZC) nanoparticles (CZCH) is designed. Photo-crosslinked CZCH is used to form hydrogel films fleetly in periosteal soft tissues to achieve sustained curcumin and CeO2 nanoparticles release in response to acidity and reactive oxygen species (ROS) in the inflammatory microenvironment. In vitro experiments and RNA-seq results demonstrated that CZCH achieved dual-homeostatic regulation of inflammatory macrophages and stem cells through immune repolarization and enhanced efferocytosis, maintaining immune cell homeostasis and normal differentiation. These findings of the DHM strategy are also validated by establishing THO mice and rat models. In conclusion, the CZCH hydrogel spray developed based on the DHM strategy enables synergistic THO prevention, providing a reference for a standard procedure of clinical operations.
Collapse
Affiliation(s)
- Jiazhao Yang
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Xudong Zhang
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Baoliang Lu
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Jiawei Mei
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Lei Xu
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Xianzuo Zhang
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Zheng Su
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Wei Xu
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Shiyuan Fang
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Chen Zhu
- Department of OrthopedicsThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiAnhui230001P. R. China
| | - Dongdong Xu
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233P. R. China
| | - Wanbo Zhu
- Department of OrthopedicsShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai Jiao Tong UniversityShanghai200233P. R. China
| |
Collapse
|
14
|
Franco Mesa C, Mazzola Poli de Figueiredo S, Lu R. Extensive Heterotopic Ossification in a Large Incisional Ventral Hernia After a Burn Injury Requiring Transversus Abdominis Release. Cureus 2023; 15:e35312. [PMID: 36968946 PMCID: PMC10038175 DOI: 10.7759/cureus.35312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Heterotopic ossification (HO) is an atypical complication of burn injuries presenting in 0.2-4% of cases. Usually, HO develops surrounding long bones or joints after orthopedic procedures or trauma. However, on extremely rare occasions, HO can develop from other bones such as the xiphoid. The purpose of this case report is to describe a case of an open retromuscular abdominal wall reconstruction with bilateral transversus abdominis release (TAR) in a patient with extensive abdominal heterotopic ossification following a midline laparotomy in the setting of a large burn injury. The patient was a 42-year-old man with a history of 55% total burn surface area (TBSA) second- and third-degree flame burns who was treated in a large academic hospital with a renowned burn unit. His case in particular was brought to attention for the rare presentation of the aftermath of a burn injury and the technical surgical challenge it posed. Five months after the last surgical intervention, the patient is doing well without further complications or clinical signs of hernia recurrence. Since there are no established guidelines for patients with HO after burn injuries, learning about alternate strategies will expand the armamentarium of abdominal wall reconstruction surgeons in this challenging patient population. Specifically, retromuscular ventral hernia repair with transversus abdominis release and synthetic mesh can be used in complex ventral hernia repair complicated by heterotopic ossification after a major burn.
Collapse
|
15
|
Enhanced Antimicrobial Activity of Silver Sulfadiazine Cosmetotherapeutic Nanolotion for Burn Infections. COSMETICS 2022. [DOI: 10.3390/cosmetics9050093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Burns are highly traumatizing injuries that can be complicated by various microbial infections, leading to morbidity and mortality. The ultimate goal of burn therapy is to prevent any microbial infection and rapid wound healing with epithelization. The current study aimed to develop and investigate the potential of nanoemulsion-based cosmetotherapeutic lotion of silver sulfadiazine (SSD) for increased antimicrobial activity to treat burn injuries. Silver sulfadiazine is the standard topical treatment for burn patients, but is allied with major limitations of poor solubility, low bioavailability, and other hematologic effects, hindering its pharmaceutical applications. The nanoformulation was fabricated through the ultrasonication technique and optimized by selecting various parameters and concentrations for the formation of water-in-oil (w/o) emulsion. The optimized formulation depicts a smaller particle size of 213 nm with an encapsulation efficiency of approx. 80%. Further, nanoemulsion-based SSD lotion by utilizing argan oil as a cosmetotherapeutic agent was prepared for scar massaging with improved permeation properties. The designed cosmeceutical formulation was characterized in terms of physical appearance, refractive index, particle size, encapsulation efficiency, and biocompatibility. The compatibility of the formulation ingredients were determined through FTIR (Fourier Transform Infrared Spectroscopy). The formulated nanolotion containing SSD demonstrated superior antimicrobial activities against different bacterial strains in comparison to commercialized burn creams.
Collapse
|
16
|
Yang Y, Chen D, Li Y, Zou J, Han R, Li H, Zhang J. Effect of Puerarin on Osteogenic Differentiation in vitro and on New Bone Formation in vivo. Drug Des Devel Ther 2022; 16:2885-2900. [PMID: 36060929 PMCID: PMC9433167 DOI: 10.2147/dddt.s379794] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Puerarin (C21H20O10) is a phytoestrogen that possesses various pharmacological effect, and several researches have revealed the relationship between puerarin and bone metabolism. This study was aimed to evaluate the potential influence of puerarin on the proliferation and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) as well as on new bone formation following rapid maxillary expansion (RME) model in rats. Methods Rat BMSCs were adopted, and the cell proliferation was detected by cell-counting kit-8 (CCK-8) assay in vitro experiments. Alkaline phosphatase (ALP) activity and alizarin red staining were analyzed quantitatively to show extracellular matrix mineralization. The mRNA and protein expression levels were used to detect osteogenic differentiation of BMSCs. In vivo bone regeneration was analyzed in a rat RME model. Eighteen 6-week-old male Wistar rats were divided into 3 groups: group 1 without any treatment, group 2 received RME and saline solution (15mg/kg), group 3 received RME and puerarin solution (15mg/kg). After 2 weeks, micro-computed tomography (Micro-CT), hematoxylin and eosin (HE) staining, and Masson staining were used to detect the new bone formation and morphological changes. Besides, ALP and bone morphogenetic protein 2 (BMP2) expression levels in mid-palatal suture were evaluated by immunohistochemical staining. Results The results showed that puerarin upregulates cell proliferation dose-dependently. ALP activity and mineralized matrix generation were clearly enhanced at certain specific concentrations (10−5 and 10−6 mol/L); the expression levels of the osteoblast-related genes and proteins were increased. The measurement of micro-CT imaging revealed that puerarin significantly promoted new bone formation. Concomitantly, the histological examinations showed that puerarin solution enhanced osteogenesis in mid-palatal suture. Conclusion Those works indicated that puerarin regulates osteogenesis in vitro and exerts a beneficial impact on bone regeneration in vivo, revealing that puerarin treatment may become one of the potential keys for improving the stability and preventing relapse of RME.
Collapse
Affiliation(s)
- Yanran Yang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Daiyun Chen
- Department of Orthodontics, School of Stomatology, Shandong First Medical University, Jinan, People’s Republic of China
| | - Yilin Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jinghua Zou
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Ruiqi Han
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Hongkun Li
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jun Zhang
- Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Correspondence: Jun Zhang, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China, Tel +86 13953109816, Fax +86 53188382923, Email
| |
Collapse
|
17
|
Ding R, Lu C, Zhao J, He D. Heterotopic ossification after alloplastic temporomandibular joint replacement: a case cohort study. BMC Musculoskelet Disord 2022; 23:638. [PMID: 35787680 PMCID: PMC9252052 DOI: 10.1186/s12891-022-05582-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Background Heterotopic ossification (HO) is one of the serious complications leading to the failure of alloplastic temporomandibular joint replacement (TJR). However, there was few research on its exact incidence and occurrence. Severe HO might result in pain and limited mouth opening after surgery. Therefore, it is necessary to clarify its clinical and imaging manifestations. The purpose of this study was to study the occurrence and classify HO after the alloplastic TJR. Method Patients who underwent standard TJR (Zimmer Biomet stock prostheses or Chinese stock prostheses) with fat graft and at least 1-year-follow-up were included. HO was classified into 4 types according to postoperative computed tomography (CT) scans. Type and occurrence in different TMJ disease were compared. Joint space within 1 week after operation was measured and compared between HO and non-HO TJRs. Maximum incisal opening (MIO), pain, and quality of life (QoL) were recorded and their relevance with HO was analyzed statistically. Result 81cases with 101 joints were included in the study. The mean follow-up time was 22.9 months (12 ~ 56 months). Among the 48 joints, 27 (56.3%) were type I (bone islands); 16 (33.3%) were type II (bone spurs from the mandibular ramus); 3 (6.3%) were type III (bone spurs from the fossa); and 2 (4.2%) were type IV (bone spurs from both the mandibular ramus and fossa). In HO patients, joint space in type IV was smaller than the other 3 types. Pain scores in HO were significantly greater than non-HO patients before and after operations (p < 0.05). 1 patient in Type IV HO developed ankylosis and had prosthesis revision which accounted for 2.1% in HO patients and 1.0% in all TJR patients. Conclusion HO after alloplastic TJR with fat graft was not severe except for type IV, which was easy to cause ankylosis. Preserving sufficient TJR space was important for ankylosis prevention.
Collapse
Affiliation(s)
- Ruoyi Ding
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,National Clinical Research Center of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China
| | - Chuan Lu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,National Clinical Research Center of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China
| | - Jieyun Zhao
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.,National Clinical Research Center of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China
| | - Dongmei He
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China. .,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China. .,National Clinical Research Center of Stomatology, No. 639 Zhi Zao Ju Road, Huang Pu District, Shanghai, 200011, China.
| |
Collapse
|
18
|
Huang J, Liu D, Zhang J, Xiao H. A Network Pharmacology Study: Reveal the Mechanisms of Palovarotene Against Heterotopic Ossification. Front Med (Lausanne) 2022; 9:897392. [PMID: 35646981 PMCID: PMC9136101 DOI: 10.3389/fmed.2022.897392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Heterotopic ossification (HO) occurs when bone forms within non-ossifying tissues, such as in muscle. Palovarotene, an activator of retinoic acid receptor γ (RAR-γ), has been shown to inhibit the formation of ectopic bone in HO model mice, but its specific mechanism of action remains unclear. This study will explore the target and molecular mechanism of Palovarotene's action on HO by network pharmacology study. We collected the relevant targets of Palovarotene and HO from the database, obtained the potential targets of Palovarotene acting on HO through Venn analysis, and constructed the protein-protein interaction (PPI) network. Then, Gene Ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment Analysis and Module-based Network Analysis were performed for potential targets, and in addition, PPI Network Topology Analysis and Gene-Phenotype Correlation Analysis were performed. The results suggested that MAPK1, MDM2, and other targets as well as P53 signaling pathway and PI3K–Akt signaling pathway may be closely related to Palovarotene treatment of HO. We carried out verification experiments to confirm our finding, alkaline phosphatase and alizarin red staining in vitro and Micro-CT as well as hematoxylin-eosin staining in vivo were performed to verify treatment for HO of Palovarotene, reverse transcription polymerase chain reaction was also used to explore the transcription changes of MAPK1, MDM2, and osteogenic genes. This study systematically elucidated the possible mechanism of Palovarotene in the treatment of HO through network pharmacology study, revealing a new direction for the further application of Palovarotene in the treatment of HO.
Collapse
Affiliation(s)
- Junchao Huang
- Department of Orthopedics, Shanghai Fenxian District Central Hospital/Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Dachuan Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingwei Zhang
- Department of Orthopedics, Shanghai Fenxian District Central Hospital/Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Haijun Xiao
- Department of Orthopedics, Shanghai Fenxian District Central Hospital/Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
- *Correspondence: Haijun Xiao
| |
Collapse
|
19
|
[Research progress of traumatic heterotopic ossification]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:386-394. [PMID: 35293183 PMCID: PMC8923934 DOI: 10.7507/1002-1892.202110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To review and evaluate the research progress of traumatic heterotopic ossification (HO). METHODS The domestic and foreign related research literature on traumatic HO was widely consulted, and its etiology, pathogenesis, pathological progress, diagnosis, prevention, and treatment were summarized. RESULTS Traumatic HO is often caused by severe trauma such as joint operation, explosion injury, nerve injury, and burn. At present, it is widely believed that the occurrence of traumatic HO is closely related to inflammation and hypoxia. Oral non-steroidal anti-inflammatory drugs and surgery are the main methods to prevent and treat traumatic HO. CONCLUSION Nowadays, the pathogenesis of traumatic HO is still unclear, the efficiency of relevant prevention and treatment measures is low, and there is a lack of specific treatment method. In the future, it is necessary to further study the pathogenesis of traumatic HO and find specific prevention and treatment targets.
Collapse
|
20
|
Alkhuzaei FM, Alsairafi R, Alqurashi KM, Al-Zaidi RS. Panniculitis Ossificans in Posterior Knee: An Unusual Presentation. Cureus 2021; 13:e19369. [PMID: 34786273 PMCID: PMC8577823 DOI: 10.7759/cureus.19369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
Panniculitis ossificans (PO) is a heterotopic ossification, benign recurring lesion, presenting in a variety of presentations anywhere in the body. The condition can sometimes be mistaken for a malignant bone tumor or long list of other differential diagnoses which have been mentioned in our report and that may lead to unnecessary wrong management. We report a case of a patient with subcutaneous ossification in the posterior aspect of the left knee. PO was confirmed histologically showing subcutaneous fat necrosis associated with osteoid material.
Collapse
Affiliation(s)
| | - Rani Alsairafi
- General Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, SAU
| | | | - Rana S Al-Zaidi
- Laboratory and Blood Bank, King Faisal Hospital, Makkah, SAU
| |
Collapse
|