1
|
Ciftel S, Mercantepe T, Aktepe R, Pinarbas E, Ozden Z, Yilmaz A, Mercantepe F. Protective Effects of Trimetazidine and Dexmedetomidine on Liver Injury in a Mesenteric Artery Ischemia-Reperfusion Rat Model via Endoplasmic Reticulum Stress. Biomedicines 2024; 12:2299. [PMID: 39457612 PMCID: PMC11504293 DOI: 10.3390/biomedicines12102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Acute mesenteric ischemia can lead to severe liver damage due to ischemia-reperfusion (I/R) injury. This study investigated the protective effects of trimetazidine (TMZ) and dexmedetomidine (DEX) against liver damage induced by mesenteric artery I/R via endoplasmic reticulum stress (ERS) mechanisms. METHODS Twenty-four rats were divided into four groups: control, I/R, I/R+TMZ, and I/R+DEX. TMZ (20 mg/kg) was administered orally for seven days, and DEX (100 µg/kg) was given intraper-itoneally 30 min before I/R induction. Liver tissues were analyzed for creatinine, alanine ami-notransferase (ALT), aspartate aminotransferase (AST), thiobarbituric acid reactive substances (TBARS), and total thiol (TT) levels. RESULTS Compared with the control group, the I/R group presented significantly increased AST, ALT, TBARS, and TT levels. TMZ notably reduced creatinine levels. I/R caused significant liver necrosis, inflammation, and congestion. TMZ and DEX treatments reduced this histopathological damage, with DEX resulting in a more significant reduction in infiltrative areas and vascular congestion. The increase in the expression of caspase-3, Bax, 8-OHdG, C/EBP homologous protein (CHOP), and glucose-regulated protein 78 (GRP78) decreased with the TMZ and DEX treatments. In addition, Bcl-2 positivity decreased both in the TMZ and DEX treatments. CONCLUSIONS Both TMZ and DEX have protective effects against liver damage. These effects are likely mediated through the reduction in ERS and apoptosis, with DEX showing slightly superior protective effects compared with TMZ.
Collapse
Affiliation(s)
- Sedat Ciftel
- Department of Gastroenterology and Hepatology, Erzurum Regional Education and Research Hospital, 25070 Erzurum, Turkey;
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (T.M.); (Z.O.)
| | - Riza Aktepe
- Department of Anatomy, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Esra Pinarbas
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Zulkar Ozden
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey; (T.M.); (Z.O.)
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey;
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, 53100 Rize, Turkey
| |
Collapse
|
2
|
Chen DX, Tan ZM, Lin XM. General Anesthesia Exposure in Infancy and Childhood: A 10-year Bibliometric Analysis. J Perianesth Nurs 2024; 39:772-781. [PMID: 38520467 DOI: 10.1016/j.jopan.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 03/25/2024]
Abstract
PURPOSE Heated discussions have divided health care providers and policymakers on the risks versus benefits of general anesthesia in pediatric populations. We conducted this study to provide a comprehensive bibliometric analysis of general anesthesia in this specific population over the past decade. DESIGN We summarized and quantitatively analyzed the studies related to general anesthesia in children and infants over the past decade. METHODS Using the Web of Science Core Collection as the data source, we analyzed the literature using CiteSpace software, focusing on authors, countries, institutions, keywords, and references to identify hotspots and predict research trends. FINDINGS A total of 2,364 publications on pediatric anesthesia were included in the analysis. The number of related publications and citations steadily increased from 2013 to 2022. The United States was the leading country in terms of output, and University of Toronto was the primary contributing institution. Co-citation analysis revealed that over the past decade research has mainly focused on the long-term adverse effects of general anesthesia on neurodevelopment and acute perioperative crisis events. Keyword analysis identified infant sedation and drug selection and compatibility as promising areas for development. In addition, improving the quality of perioperative anesthesia will be a major research focus in the future. CONCLUSIONS Recent research in pediatric anesthesia has focused on mitigating the adverse effects of general anesthesia in infants and young children and studying the pharmacological compatibility of anesthetics. Our study results would assist researchers and clinicians in understanding the current research status and optimizing clinical practice in this field.
Collapse
Affiliation(s)
- Dong X Chen
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan Province, China
| | - Zhi M Tan
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Xue M Lin
- Department of Anesthesiology, West China Second Hospital of Sichuan University, Chengdu, Sichuan Province, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Tian L, Liu Q, Wang X, Chen S, Li Y. Fighting ferroptosis: Protective effects of dexmedetomidine on vital organ injuries. Life Sci 2024; 354:122949. [PMID: 39127318 DOI: 10.1016/j.lfs.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Vital organ injury is one of the leading causes of global mortality and socio-economic burdens. Current treatments have limited efficacy, and new strategies are needed. Dexmedetomidine (DEX) is a highly selective α2-adrenergic receptor that protects multiple organs by reducing inflammation and preventing cell death. However, its exact mechanism is not yet fully understood. Understanding the underlying molecular mechanisms of its protective effects is crucial as it could provide a basis for designing highly targeted and more effective drugs. Ferroptosis is the primary mode of cell death during organ injury, and recent studies have shown that DEX can protect vital organs from this process. This review provides a detailed analysis of preclinical in vitro and in vivo studies and gains a better understanding of how DEX protects against vital organ injuries by inhibiting ferroptosis. Our findings suggest that DEX can potentially protect vital organs mainly by regulating iron metabolism and the antioxidant defense system. This is the first review that summarizes all evidence of ferroptosis's role in DEX's protective effects against vital organ injuries. Our work aims to provide new insights into organ therapy with DEX and accelerate its translation from the laboratory to clinical settings.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, China
| | - Xing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
4
|
Zhang ZZ, Nasir A, Li D, Khan S, Bai Q, Yuan F. Effect of dexmedetomidine on ncRNA and mRNA profiles of cerebral ischemia-reperfusion injury in transient middle cerebral artery occlusion rats model. Front Pharmacol 2024; 15:1437445. [PMID: 39170713 PMCID: PMC11335533 DOI: 10.3389/fphar.2024.1437445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Ischemic stroke poses a significant global health burden, with rapid revascularization treatments being crucial but often insufficient to mitigate ischemia-reperfusion (I/R) injury. Dexmedetomidine (DEX) has shown promise in reducing cerebral I/R injury, but its potential molecular mechanism, particularly its interaction with non-coding RNAs (ncRNAs), remains unclear. This study investigates DEX's therapeutic effect and potential molecular mechanisms in reducing cerebral I/R injury. A transient middle cerebral artery obstruction (tMACO) model was established to simulate cerebral I/R injury in adult rats. DEX was administered pre-ischemia and post-reperfusion. RNA sequencing and bioinformatic analyses were performed on the ischemic cerebral cortex to identify differentially expressed non-coding RNAs (ncRNAs) and mRNAs. The sequencing results showed 6,494 differentially expressed (DE) mRNA and 2698 DE circRNA between the sham and tMCAO (I/R) groups. Additionally, 1809 DE lncRNA, 763 DE mRNA, and 2795 DE circRNA were identified between the I/R group and tMCAO + DEX (I/R + DEX) groups. Gene ontology (GO) analysis indicated significant enrichment in multicellular biogenesis, plasma membrane components, and protein binding. KEGG analysis further highlighted the potential mechanism of DEX action in reducing cerebral I/R injury, with hub genes involved in inflammatory pathways. This study demonstrates DEX's efficacy in reducing cerebral I/R injury and offers insights into its brain-protective effects, especially in ischemic stroke. Further research is warranted to fully understand DEX's neuroprotective mechanisms and its clinical applications.
Collapse
Affiliation(s)
- Zhen Zhen Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Abdul Nasir
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dong Li
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Suliman Khan
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qian Bai
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Medical Research Center, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Yuan
- Department of Anesthesiology, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Yao X, Liu Y, Sui Y, Zheng M, Zhu L, Li Q, Irwin MG, Yang L, Zhan Q, Xiao J. Dexmedetomidine facilitates autophagic flux to promote liver regeneration by suppressing GSK3β activity in mouse partial hepatectomy. Biomed Pharmacother 2024; 177:117038. [PMID: 39002441 DOI: 10.1016/j.biopha.2024.117038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION Dexmedetomidine (DEX), a highly selective α2-adrenergic receptor agonist, is widely used for sedation and anesthesia in patients undergoing hepatectomy. However, the effect of DEX on autophagic flux and liver regeneration remains unclear. OBJECTIVES This study aimed to determine the role of DEX in hepatocyte autophagic flux and liver regeneration after PHx. METHODS In mice, DEX was intraperitoneally injected 5 min before and 6 h after PHx. In vitro, DEX was co-incubated with culture medium for 24 h. Autophagic flux was detected by LC3-II and SQSTM1 expression levels in primary mouse hepatocytes and the proportion of red puncta in AML-12 cells transfected with FUGW-PK-hLC3 plasmid. Liver regeneration was assessed by cyclinD1 expression, Edu incorporation, H&E staining, ki67 immunostaining and liver/body ratios. Bafilomycin A1, si-GSK3β and Flag-tagged GSK3β, α2-ADR antagonist, GSK3β inhibitor, AKT inhibitor were used to identify the role of GSK3β in DEX-mediated autophagic flux and hepatocyte proliferation. RESULTS Pre- and post-operative DEX treatment promoted liver regeneration after PHx, showing 12 h earlier than in DEX-untreated mice, accompanied by facilitated autophagic flux, which was completely abolished by bafilomycin A1 or α2-ADR antagonist. The suppression of GSK3β activity by SB216763 and si-GSK3β enhanced the effect of DEX on autophagic flux and liver regeneration, which was abolished by AKT inhibitor. CONCLUSION Pre- and post-operative administration of DEX facilitates autophagic flux, leading to enhanced liver regeneration after partial hepatectomy through suppression of GSK3β activity in an α2-ADR-dependent manner.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Yongheng Sui
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Miao Zheng
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Ling Zhu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Quanfu Li
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | | | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University of Medicine, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China; Shanghai Engineering Research Center of Peri-operative Organ Support and Function Preservation, Shanghai, China.
| |
Collapse
|
6
|
Zhang R, Xie K, Lian Y, Hong S, Zhu Y. Dexmedetomidine ameliorates x-ray-induced myocardial injury via alleviating cardiomyocyte apoptosis and autophagy. BMC Cardiovasc Disord 2024; 24:323. [PMID: 38918713 PMCID: PMC11201331 DOI: 10.1186/s12872-024-03988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Radiotherapy is a primary local treatment for tumors, yet it may lead to complications such as radiation-induced heart disease (RIHD). Currently, there is no standardized approach for preventing RIHD. Dexmedetomidine (Dex) is reported to have cardio-protection effects, while its role in radiation-induced myocardial injury is unknown. In the current study, we aimed to evaluate the radioprotective effect of dexmedetomidine in X-ray radiation-treated mice. METHODS 18 male mice were randomized into 3 groups: control, 16 Gy, and 16 Gy + Dex. The 16 Gy group received a single dose of 16 Gy X-ray radiation. The 16 Gy + Dex group was pretreated with dexmedetomidine (30 µg/kg, intraperitoneal injection) 30 min before X-ray radiation. The control group was treated with saline and did not receive X-ray radiation. Myocardial tissues were collected 16 weeks after X-ray radiation. Hematoxylin-eosin staining was performed for histopathological examination. Terminal deoxynucleotidyl transferase dUTP nick-end labeling staining was performed to assess the state of apoptotic cells. Immunohistochemistry staining was performed to examine the expression of CD34 molecule and von Willebrand factor. Besides, western blot assay was employed for the detection of apoptosis-related proteins (BCL2 apoptosis regulator and BCL2-associated X) as well as autophagy-related proteins (microtubule-associated protein 1 light chain 3, beclin 1, and sequestosome 1). RESULTS The findings demonstrated that 16 Gy X-ray radiation resulted in significant changes in myocardial tissues, increased myocardial apoptosis, and activated autophagy. Pretreatment with dexmedetomidine significantly protects mice against 16 Gy X-ray radiation-induced myocardial injury by inhibiting apoptosis and autophagy. CONCLUSION In summary, our study confirmed the radioprotective effect of dexmedetomidine in mitigating cardiomyocyte apoptosis and autophagy induced by 16 Gy X-ray radiation.
Collapse
MESH Headings
- Animals
- Autophagy/drug effects
- Autophagy/radiation effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/radiation effects
- Myocytes, Cardiac/metabolism
- Apoptosis/drug effects
- Male
- Dexmedetomidine/pharmacology
- Radiation Injuries, Experimental/prevention & control
- Radiation Injuries, Experimental/pathology
- Radiation Injuries, Experimental/metabolism
- Radiation Injuries, Experimental/drug therapy
- Radiation-Protective Agents/pharmacology
- Disease Models, Animal
- Signal Transduction/drug effects
- Mice
- Autophagy-Related Proteins/metabolism
- Mice, Inbred C57BL
- Apoptosis Regulatory Proteins/metabolism
Collapse
Affiliation(s)
- Runze Zhang
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Kangjie Xie
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Yanhong Lian
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Shufang Hong
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China
| | - Yuntian Zhu
- Department of Anesthesiology, Zhejiang Cancer Hospital, No. 1 East Banshan Road, Gongshu District, Hangzhou, Zhejiang, 310022, China.
| |
Collapse
|
7
|
Jiang L, Xiong W, Yang Y, Qian J. Insight into Cardioprotective Effects and Mechanisms of Dexmedetomidine. Cardiovasc Drugs Ther 2024:10.1007/s10557-024-07579-9. [PMID: 38869744 DOI: 10.1007/s10557-024-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
8
|
Liu Q, Yang GH, Wang NZ, Wang XC, Zhang ZL, Qiao LJ, Cui WJ. Dexmedetomidine suppressed the biological behavior of RAW264.7 cells treated with LPS by down-regulating HOTAIR. Heliyon 2024; 10:e27690. [PMID: 38533037 PMCID: PMC10963246 DOI: 10.1016/j.heliyon.2024.e27690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Background Previous studies have revealed dexmedetomidine have potential protective effects on vital organs by inhibiting the release of inflammatory cytokines. To investigate the effects of dexmedetomidine on sepsis, especially in the initial inflammatory stage of sepsis. RAW264.7 cells were used as the cell model in this study to elucidate the underlying mechanisms. Methods In this study, we conducted several assays to investigate the mechanisms of dexmedetomidine and HOTAIR in sepsis. Cell viability was assessed using the CCK-8 kit, while inflammation responses were measured using ELISA for IL-1β, IL-6, and TNF-α. Additionally, we employed qPCR, MeRIP, and RIP to further explore the underlying mechanisms. Results Our findings indicate that dexmedetomidine treatment enhanced cell viability and reduced the production of inflammatory cytokines in LPS-treated RAW264.7 cells. Furthermore, we observed that the expression of HOTAIR was increased in LPS-treated RAW264.7 cells, which was then decreased upon dexmedetomidine pre-treatment. Further investigation demonstrated that HOTAIR could counteract the beneficial effects of dexmedetomidine on cell viability and cytokine production. Interestingly, we discovered that YTHDF1 targeted HOTAIR and was upregulated in LPS-treated RAW264.7 cells, but reduced in dexmedetomidine treatment. We also found that YTHDF1 increased HOTAIR and HOTAIR m6A levels. Conclusions Collectively, our results suggest that dexmedetomidine downregulates HOTAIR and YTHDF1 expression, which in turn inhibits the biological behavior of LPS-treated RAW264.7 cells. This finding has potential implications for the prevention and treatment of sepsis-induced kidney injury.
Collapse
Affiliation(s)
- Qin Liu
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - Guang-Hu Yang
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - Nai-Zhi Wang
- Department of Respiratory and Critical Care Medicine, Jinan Central Hospital, Jinan, Shandong, 250013, China
| | - Xin-Cheng Wang
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - Zhao-Long Zhang
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - Lu-Jun Qiao
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - Wen-Juan Cui
- Intensive Care Unit, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| |
Collapse
|
9
|
Huang Z, Bai Y, Chen Y, Chen Y, Jiang Y, Zhou J. Attenuation of intestinal ischemia-reperfusion-injury by anesthetics: a potentially protective effect of anesthetic management in experimental studies. Front Pharmacol 2024; 15:1367170. [PMID: 38444936 PMCID: PMC10912591 DOI: 10.3389/fphar.2024.1367170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024] Open
Abstract
Intestinal ischemia-reperfusion injury (IRI) is a potentially severe clinical syndrome after major surgical procedures. In addition to causing intestinal mucosa injury, intestinal IRI further damages distant organs, causing the severity of the condition in patients. So far, effective therapy for intestinal IRI is still absent, and the survival rate of the patients is low. Previous experimental studies have shown that some anesthetics can alleviate intestinal IRI and protect organs while exerting their pharmacological effects, indicating that reasonable perioperative anesthesia management may provide potential benefits for patients to avoid intestinal IRI. These meaningful findings drive scholars to investigate the mechanism of anesthetics in treating intestinal IRI in-depth to discuss the possible new clinical uses. In the present mini-review, we will introduce the protective effects of different anesthetics in intestinal IRI to help us enrich our knowledge in this area.
Collapse
Affiliation(s)
- Zhan Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Anesthesiology, Dazhou Integrated TCM & Western Medicine Hospital, Dazhou Second People’s Hospital, Dazhou, China
| | - Yiping Bai
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Ying Chen
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| | - Ye Chen
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
- Department of Traditional Chinese Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yuan Jiang
- Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Gao X, Wu Y. Perioperative acute kidney injury: The renoprotective effect and mechanism of dexmedetomidine. Biochem Biophys Res Commun 2024; 695:149402. [PMID: 38159412 DOI: 10.1016/j.bbrc.2023.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.
Collapse
Affiliation(s)
- Xiong Gao
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, Hube, China.
| |
Collapse
|
11
|
Huang M, Wang J, Zhai M, Liu J, Zhu Y, Zhang Y, Zhao J, Wang H, Sun J, Yu H, Liu C. Sigma-1 receptor regulates the endoplasmic reticulum stress pathway in the protective mechanism of dexmedetomidine against hyperoxia-induced lung injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166885. [PMID: 37714499 DOI: 10.1016/j.bbadis.2023.166885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Perioperative hyperoxia therapy is of great significance to save the lives of patients, but little is known about the possible mechanisms that induce hyperoxia-induced acute lung injury (HALI) and the measures for clinical prevention and treatment. In this experiment, the models were established with a feeding chamber with automatic regulation of oxygen concentration. The results showed that with the increase in inhaled oxygen concentration and the prolongation of exposure time, the severity of lung injury also increases significantly, reaching the diagnostic indication of HALI after 48 h of inhaling 95 % oxygen concentration. Subsequently, according to the dynamic changes of apoptosis in lung specimens, and the expression changes in Sig-1R-regulated ER stress pathway proteins (Sig-1R, GRP78, p-PERK, ATF6, IRE1, Caspase-12, ATF4, CHOP, Caspase-3 and p-JNK), it was confirmed that the Sig-1R-regulated ER stress signaling pathway was involved in the occurrence of HALI. To explore the preventive and therapeutic effects of routine clinical medication on HALI during the perioperative period, our research group selected dexmedetomidine (Dex) with lung protection. The experimental results revealed that Dex partially reversed the changes in the expression levels of Sig-1R-regulated ER stress pathway proteins. These results preliminarily confirmed that Dex may inhibit apoptosis induced by high oxygen concentration through the Sig-1R-regulated ER stress signaling pathway, thus playing a protective role in HALI.
Collapse
Affiliation(s)
- Meina Huang
- Department of Anaesthesiology, Wuqing People's Hospital, Tianjin 301799, China; The Institute of Radiation Medicine, Chinese Academy of Medical Sciences, Tianjin 300110, China
| | - Jinhui Wang
- Department of Anaesthesiology, Tianjin 4th Center Hospital, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Meili Zhai
- Department of Anaesthesiology, Tianjin Central Hospital of Gynecology Obstetrics, Nankai University Maternity Hospital, Tianjin 300100, China
| | - Jiqiang Liu
- Department of Anaesthesiology, Wuqing People's Hospital, Tianjin 301799, China
| | - Yongjie Zhu
- Department of Pathology, First People's Hospital of Aksu, Xinjiang 843000, China
| | - Yang Zhang
- Department of Anaesthesiology, Tianjin 4th Center Hospital, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Jing Zhao
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China
| | - Huiquan Wang
- School of Life Sciences, Tiangong University, Tianjin 300387, China
| | - Jinglai Sun
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China..
| | - Hui Yu
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin 300072, China..
| | - Chong Liu
- Department of Anaesthesiology, Tianjin 4th Center Hospital, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China; School of Life Sciences, Tiangong University, Tianjin 300387, China; School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
12
|
Zhang Y, Wei H, Wang M, Yu Y, Gu M, Zhong H, Dong S. Dexmedetomidine alleviates ferroptosis following hepatic ischemia-reperfusion injury by upregulating Nrf2/GPx4-dependent antioxidant responses. Biomed Pharmacother 2023; 169:115915. [PMID: 38000361 DOI: 10.1016/j.biopha.2023.115915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) adversely affects liver transplant and resection outcomes. Recently, ferroptosis has been associated with HIRI. Dexmedetomidine (Dex), a potent sedative with anti-inflammatory, antioxidant, and anti-apoptotic properties, protects organs from hypoxic or ischemia-reperfusion (I/R) injuries. However, the mechanisms underlying this protective effect against I/R-induced liver injury remain unclear. This study evaluated the effect of Dex on HIRI in mouse models and the oxygen-glucose deprivation/reperfusion (OGD/R) AML12 cell model. We examined ferroptosis-related markers, including Fe2+ levels, reactive oxygen species (ROS) content, mitochondrial morphology, GPX4 protein expression, 4-hydroxynonenal (4-HNE), and Nrf2. The Nrf2 inhibitor ML385 was used in combination with Dex to treat HIRI mice and OGD/R-induced cellular models to explore the pathways by which Dex counteracts ferroptosis. Our results showed that Dex treatment significantly ameliorated OGD/R-induced ferroptosis in AML12 cells, including reduced Fe2+, ROS, malondialdehyde (MDA), and 4-HNE levels. Dex also ameliorated liver tissue damage and reduced serum AST, ALT, and inflammatory factor levels in HIRI mice. Additionally, Dex increased the levels of GSH, an antioxidative stress marker, and GPX4 expression in HIRI mice. Mechanistically, Nrf2 expression and nuclear translocation were significantly inhibited in both HIRI mice and OGD/R-treated AML12 cells. Dex treatment also restored the I/R-induced inhibition of Nrf2 expression and nuclear translocation. ML385 significantly inhibited Dex-promoted Nrf2 nuclear aggregation with Gpx4 protein expression, hindering the efficacy of Dex. In conclusion, Dex ameliorates ferroptosis in HIRI by positively regulating the Nrf2/GPx4 axis, potentially presenting a therapeutic avenue for addressing HIRI.
Collapse
Affiliation(s)
- Yongjun Zhang
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Hua Wei
- Department of Pharmacy, Chengdu Second People's Hospital, Chengdu, China
| | - Mengmei Wang
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Yang Yu
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Mengyue Gu
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China
| | - Hui Zhong
- Department of Anesthesiology, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu 610213, China.
| | - Shuhua Dong
- Department of Anesthesiology, Chengdu BOE Hospital, Chengdu 611743, Sichuan, China.
| |
Collapse
|
13
|
Mercantepe F, Tumkaya L, Mercantepe T, Akyildiz K, Ciftel S, Yilmaz A. The Effects of Dexmedetomidine on Abdominal Aortic Occlusion-Induced Ovarian Injury via Oxidative Stress and Apoptosis. Cells Tissues Organs 2023; 212:554-566. [PMID: 37339613 DOI: 10.1159/000531613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 06/22/2023] Open
Abstract
Ischemia/reperfusion (I/R) induced ovarian damage is caused by various diseases such as ovarian torsion, ovarian transplantation, cardiovascular surgery, sepsis, or intra-abdominal surgery. I/R-related oxidative damage can impair ovarian functions, from oocyte maturation to fertilization. This study investigated the effects of dexmedetomidine (DEX), which has been shown to exhibit antiapoptotic, anti-inflammatory, and antioxidant effects, on ovarian I/R injury. We designed four study groups: group 1 (n = 6): control group; group 2 (n = 6): only DEX group; group 3 (n = 6): I/R group; group 4 (n = 6): I/R + DEX group. Then, ovarian samples were taken and examined histologically and immunohistochemically, and tissue malondialdehyde (MDA) and glutathione (GSH) levels were measured. In the I/R group MDA levels, caspase-3, NF-κB/p65, 8-OHdG positivity, and follicular degeneration, edema, and inflammation were increased compared to the control group (p = 0.000). In addition, GSH levels were significantly decreased in the I/R group compared to the control group (p = 0.000). On the other hand, in the I/R + DEX treatment group MDA levels, caspase-3, NF-κB/p65, 8-OHdG positivity, follicular degeneration, edema, and inflammation findings were decreased than in the I/R group (p = 0.000, p = 0.005, p = 0.005, p = 0.001, p = 0.005, respectively). However, GSH levels increased significantly in the I/R + DEX treatment group compared to the I/R group (p = 0.000). DEX protects against ovarian I/R injury through antioxidation and by suppressing inflammation and apoptosis.
Collapse
Affiliation(s)
- Filiz Mercantepe
- Department of Endocrinology and Metabolism Diseases, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Levent Tumkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Kerimali Akyildiz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Serpil Ciftel
- Department of Endocrinology and Metabolism Diseases, Erzurum Regional Education and Research Hospital, Erzurum, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
14
|
Borger M, von Haefen C, Bührer C, Endesfelder S. Cardioprotective Effects of Dexmedetomidine in an Oxidative-Stress In Vitro Model of Neonatal Rat Cardiomyocytes. Antioxidants (Basel) 2023; 12:1206. [PMID: 37371938 DOI: 10.3390/antiox12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm birth is a risk factor for cardiometabolic disease. The preterm heart before terminal differentiation is in a phase that is crucial for the number and structure of cardiomyocytes in further development, with adverse effects of hypoxic and hyperoxic events. Pharmacological intervention could attenuate the negative effects of oxygen. Dexmedetomidine (DEX) is an α2-adrenoceptor agonist and has been mentioned in connection with cardio-protective benefits. In this study, H9c2 myocytes and primary fetal rat cardiomyocytes (NRCM) were cultured for 24 h under hypoxic condition (5% O2), corresponding to fetal physioxia (pO2 32-45 mmHg), ambient oxygen (21% O2, pO2 ~150 mmHg), or hyperoxic conditions (80% O2, pO2 ~300 mmHg). Subsequently, the effects of DEX preconditioning (0.1 µM, 1 µM, 10 µM) were analyzed. Modulated oxygen tension reduced both proliferating cardiomyocytes and transcripts (CycD2). High-oxygen tension induced hypertrophy in H9c2 cells. Cell-death-associated transcripts for caspase-dependent apoptosis (Casp3/8) increased, whereas caspase-independent transcripts (AIF) increased in H9c2 cells and decreased in NRCMs. Autophagy-related mediators (Atg5/12) were induced in H9c2 under both oxygen conditions, whereas they were downregulated in NRCMs. DEX preconditioning protected H9c2 and NRCMs from oxidative stress through inhibition of transcription of the oxidative stress marker GCLC, and inhibited the transcription of both the redox-sensitive transcription factors Nrf2 under hyperoxia and Hif1α under hypoxia. In addition, DEX normalized the gene expression of Hippo-pathway mediators (YAP1, Tead1, Lats2, Cul7) that exhibited abnormalities due to differential oxygen tensions compared with normoxia, suggesting that DEX modulates the activation of the Hippo pathway. This, in the context of the protective impact of redox-sensitive factors, may provide a possible rationale for the cardio-protective effects of DEX in oxygen-modulated requirements on survival-promoting transcripts of immortalized and fetal cardiomyocytes.
Collapse
Affiliation(s)
- Moritz Borger
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
15
|
Puls R, von Haefen C, Bührer C, Endesfelder S. Dexmedetomidine Protects Cerebellar Neurons against Hyperoxia-Induced Oxidative Stress and Apoptosis in the Juvenile Rat. Int J Mol Sci 2023; 24:ijms24097804. [PMID: 37175511 PMCID: PMC10178601 DOI: 10.3390/ijms24097804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/13/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The risk of oxidative stress is unavoidable in preterm infants and increases the risk of neonatal morbidities. Premature infants often require sedation and analgesia, and the commonly used opioids and benzodiazepines are associated with adverse effects. Impairment of cerebellar functions during cognitive development could be a crucial factor in neurodevelopmental disorders of prematurity. Recent studies have focused on dexmedetomidine (DEX), which has been associated with potential neuroprotective properties and is used as an off-label application in neonatal units. Wistar rats (P6) were exposed to 80% hyperoxia for 24 h and received as pretreatment a single dose of DEX (5µg/kg, i.p.). Analyses in the immature rat cerebellum immediately after hyperoxia (P7) and after recovery to room air (P9, P11, and P14) included examinations for cell death and inflammatory and oxidative responses. Acute exposure to high oxygen concentrations caused a significant oxidative stress response, with a return to normal levels by P14. A marked reduction of hyperoxia-mediated damage was demonstrated after DEX pretreatment. DEX produced a much earlier recovery than in controls, confirming a neuroprotective effect of DEX on alterations elicited by oxygen stress on the developing cerebellum.
Collapse
Affiliation(s)
- Robert Puls
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
16
|
Dexmedetomidine improves acute lung injury by activating autophagy in a rat hemorrhagic shock and resuscitation model. Sci Rep 2023; 13:4374. [PMID: 36927753 PMCID: PMC10020563 DOI: 10.1038/s41598-023-31483-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Dexmedetomidine (DEX) can reduce lung injury in a hemorrhagic shock (HS) resuscitation (HSR) model in rats by inhibiting inflammation. Here, we aimed to investigate if these effects of DEX are due to autophagy activation. Therefore, we established HSR rat models and divided them into four groups. HS was induced using a blood draw. The rats were then resuscitated by reinjecting the drawn blood and saline. The rats were sacrificed 24 h after resuscitation. Lung tissues were harvested for histopathological examination, determination of wet/dry lung weight ratio, and detection of the levels of autophagy-related marker proteins LC3, P62, Beclin-1, and the ATG12-ATG5 conjugate. The morphological findings of hematoxylin and eosin staining in lung tissues and the pulmonary wet/dry weight ratio showed that lung injury improved in HSR + DEX rats. However, chloroquine (CQ), an autophagy inhibitor, abolished this effect. Detecting the concentration of autophagy-related proteins showed that DEX administration increased LC3, ATG12-ATG5, and Beclin-1 expression and decreased P62 expression. The expression levels of these proteins were similar to those in the HSR group after CQ + DEX administration. In summary, DEX induced autophagic activation in an HSR model. These findings suggest that DEX administration partially ameliorates HSR-induced lung injury via autophagic activation.
Collapse
|
17
|
Smith W, Whitlock EL. Cardiac surgery, ICU sedation, and delirium: is dexmedetomidine the silver bullet? Curr Opin Anaesthesiol 2023; 36:50-56. [PMID: 36342329 PMCID: PMC9789177 DOI: 10.1097/aco.0000000000001207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Delirium is a marker of acute brain insufficiency and a harbinger of poor outcomes and increased healthcare costs. Despite success preventing delirium by nonpharmacologic measures, the incidence in the postcardiac surgical ICU population remains high. Dexmedetomidine, a selective alpha-2 agonist, is a plausible preventive agent with sedative, anxiolytic, analgesic, sympatholytic and anti-inflammatory properties, and is the subject of very active study in cardiac surgery populations. RECENT FINDINGS Recent trials, including DEXACET (2019), DECADE (2020), LOWDEXDEL (2021), and DIRECT (2022) individually, failed to show a benefit for dexmedetomidine and highlighted associated risks. Meta-analyses have offered conflicting results, highlighting the complexity of delirium, and likely interaction of multiple etiological pathways; those that concluded benefit often were driven by trials at high risk of bias. Meta-analyses excluding biased trials currently suggest no benefit for dexmedetomidine over control in unselected cardiac surgical populations. SUMMARY Although using dexmedetomidine to prevent delirium in unselected cardiac surgical patients is not supported by current evidence, there remains hope that it may offer benefits in highly selected populations, and further trials are ongoing.
Collapse
Affiliation(s)
- Wendy Smith
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA
| | - Elizabeth L Whitlock
- Department of Anesthesia & Perioperative Care, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
18
|
Shimizu N, Fujiwara K, Mayahara K, Motoyoshi M, Takahashi T. Tension force causes cell cycle arrest at G2/M phase in osteocyte-like cell line MLO-Y4. Heliyon 2023; 9:e13236. [PMID: 36798766 PMCID: PMC9925960 DOI: 10.1016/j.heliyon.2023.e13236] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Abstract
Bone remodelling is the process of bone resorption and formation, necessary to maintain bone structure or for adaptation to new conditions. Mechanical loadings, such as exercise, weight bearing and orthodontic force, play important roles in bone remodelling. During the remodelling process, osteocytes play crucial roles as mechanosensors to regulate osteoblasts and osteoclasts. However, the precise molecular mechanisms by which the mechanical stimuli affect the function of osteocytes remain unclear. In the present study, we analysed viability, cell cycle distribution and gene expression pattern of murine osteocyte-like MLO-Y4 cells exposed to tension force (TF). Cells were subjected to TF with 18% elongation at 6 cycles/min for 24 h using Flexcer Strain Unit (FX-3000). We found that TF stimulation induced cell cycle arrest at G2/M phase but not cell death in MLO-Y4 cells. Differentially expressed genes (DEGs) between TF-stimulated and unstimulated cells were identified by microarray analysis, and a marked increase in glutathione-S-transferase α (GSTA) family gene expression was observed in TF-stimulated cells. Enrichment analysis for the DEGs revealed that Gene Ontology (GO) terms and Kyoto Encyclopedia Genes and Genomes (KEGG) pathways related to the stress response were significantly enriched among the upregulated genes following TF. Consistent with these results, the production of reactive oxygen species (ROS) was elevated in TF-stimulated cells. Activation of the tumour suppressor p53, and upregulation of its downstream target GADD45A, were also observed in the stimulated cells. As GADD45A has been implicated in the promotion of G2/M cell cycle arrest, these observations may suggest that TF stress leads to G2/M arrest at least in part in a p53-dependent manner.
Collapse
Affiliation(s)
- Natsuo Shimizu
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Applied Oral Science, Nihon University Graduate School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Kyoko Fujiwara
- Department of Anatomy, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Corresponding author. Department of Anatomy, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan.
| | - Kotoe Mayahara
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Clinical Research, Dental Research Centre, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Mitsuru Motoyoshi
- Department of Orthodontics, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Clinical Research, Dental Research Centre, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| | - Tomihisa Takahashi
- Department of Anatomy, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
- Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, 1-8-3 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8310, Japan
| |
Collapse
|
19
|
Pöyhiä R, Nieminen T, Tuompo VWT, Parikka H. Effects of Dexmedetomidine on Basic Cardiac Electrophysiology in Adults; a Descriptive Review and a Prospective Case Study. Pharmaceuticals (Basel) 2022; 15:1372. [PMID: 36355544 PMCID: PMC9692353 DOI: 10.3390/ph15111372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/29/2022] [Indexed: 10/01/2023] Open
Abstract
Dexmedetomidine (DEX) is a commonly used sedative agent with no or minimal effects on breathing. DEX may also be beneficial in myocardial protection. Since the mechanisms of cardiac effects are not well known, we carried out a descriptive review and examined the effects of DEX on myocardial electrical conduction in a prospective and controlled manner. For the review, clinical studies exploring DEX in myocardial protection published between 2020-2022 were explored. A case study included 11 consecutive patients at a median (range) age of 48 (38-59), scheduled for elective radiofrequency ablation of paroxysmal atrial fibrillation. A bolus dose of DEX 1 µg/kg given in 15 min was followed by a continuous infusion of 0.2-0.7 µg/kg/h. Direct intracardiac electrophysiologic measurements, hemodynamics and oxygenation were measured before and after the DEX bolus. Experimental studies show that DEX protects the heart both via stabilizing cardiac electrophysiology and reducing apoptosis and autophagy after cell injury. The clinical evidence shows that DEX provides cardiac protection during different surgeries. In a clinical study, DEX increased the corrected sinus node recovery time, prolongated the atrioventricular (AV) nodal refractory period and cycle length producing AV nodal Wenckebach retrograde conduction block. DEX has a putative role in organ protection against hypoxic, oxidative and reperfusion injury. DEX slows down the firing of the sinus node and prolongs AV refractoriness.
Collapse
Affiliation(s)
- Reino Pöyhiä
- Palliative Medicine, Department of Clinical Medicine, Kuopio Campus, University of Eastern Finland, 70211 Kuopio, Finland
- Department of Anaesthesia and Intensive Care Medicine, Helsinki University Central Hospital, 00280 Helsinki, Finland
- Palliative Center, Essote, The South Savo Social and Health Care Authority, 50100 Mikkeli, Finland
| | - Teija Nieminen
- Department of Anaesthesia and Intensive Care Medicine, Helsinki University Central Hospital, 00280 Helsinki, Finland
| | | | - Hannu Parikka
- Department of Cardiology, Helsinki University Central Hospital, 00280 Helsinki, Finland
| |
Collapse
|