1
|
Hybrid nanostructured gadolinium oxide-collagen-dextran polymeric hydrogel for corneal repair and regeneration. Int J Biol Macromol 2022; 224:1423-1438. [DOI: 10.1016/j.ijbiomac.2022.10.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
2
|
Rahman MM, Ahmed J, Asiri AM, Alfaifi SY, Marwani HM. Development of Methanol Sensor Based on Sol-Gel Drop-Coating Co 3O 4·CdO·ZnO Nanoparticles Modified Gold-Coated µ-Chip by Electro-Oxidation Process. Gels 2021; 7:gels7040235. [PMID: 34940295 PMCID: PMC8701126 DOI: 10.3390/gels7040235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
Herein, novel Co3O4·CdO·ZnO-based tri-metallic oxide nanoparticles (CCZ) were synthesized by a simple solution method in basic phase. We have used Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscope (FESEM), Dynamic Light Scattering (DLS), Tunneling Electron Microscopy (TEM), and Energy-Dispersive Spectroscopy (EDS) techniques to characterize the CCZ nanoparticles. XRD, TEM, DLS, and FESEM investigations have confirmed the tri-metallic nanoparticles’ structure, while XPS and EDS analyses have shown the elemental compositions of the CCZ nanoparticles. Later, a Au/μ-Chip was modified with the CCZ nanoparticles using a conducting binder, PEDOT: PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) in a sol-gel system, and dried completely in air. Then, the CCZ/Au/μ-Chip sensor was used to detect methanol (MeOH) in phosphate buffer solution (PBS). Outstanding sensing performance was achieved for the CCZ/Au/μ-Chip sensor, such as excellent sensitivity (1.3842 µAµM−1cm−2), a wide linear dynamic range of 1.0 nM–2.0 mM (R2 = 0.9992), an ultra-low detection limit (32.8 ± 0.1 pM at S/N = 3), a fast response time (~11 s), and excellent reproducibility and repeatability. This CCZ/Au/μ-Chip sensor was further applied with appropriate quantification results in real environmental sample analyses.
Collapse
Affiliation(s)
- Mohammed M. Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.M.A.); (S.Y.M.A.); (H.M.M.)
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: or ; Tel.: +966-59-642-1830; Fax: +966-12-695-2292
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia;
| | - Abdullah M. Asiri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.M.A.); (S.Y.M.A.); (H.M.M.)
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sulaiman Y.M. Alfaifi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.M.A.); (S.Y.M.A.); (H.M.M.)
| | - Hadi. M. Marwani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (A.M.A.); (S.Y.M.A.); (H.M.M.)
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Rahman MM, Alfaifi SY. Fabrication of Novel and Potential Selective 4-Cyanophenol Chemical Sensor Probe Based on Cu-Doped Gd 2O 3 Nanofiber Materials Modified PEDOT:PSS Polymer Mixtures with Au/µ-Chip for Effective Monitoring of Environmental Contaminants from Various Water Samples. Polymers (Basel) 2021; 13:3379. [PMID: 34641194 PMCID: PMC8512155 DOI: 10.3390/polym13193379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, a novel copper-doped gadolinium oxide (Cu-doped Gd2O3; CGO) nanofiber was synthesized by a simple solution method in the basic phase and successfully characterized. We have used Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Energy-Dispersive Spectroscopy (EDS) techniques for characterization of the CGO nanofiber. The CGO nanofiber was used later to modify Au-coated μ-Chips with poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) polymer mixtures (coating binder) to selectively detect 4-cyanophenol (4-CP) in an aqueous medium. Notable sensing performance was achieved with excellent sensitivity (2.4214 µAµM-1 cm-2), fast response time (~12 s), wide linear dynamic range (LDR = 1.0 nM-1.0 mM: R2 = 0.9992), ultra-low detection limit (LoD; 1.3 ± 0.1 pM at S/N = 3), limit of quantification (LoQ; 4.33 pM), and excellent reproducibility and repeatability for CGO/Au/μ-Chip sensor. This CGO modified Au/μ-chip was further applied with appropriate quantification and determination results in real environmental sample analyses.
Collapse
Affiliation(s)
- Mohammed Muzibur Rahman
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - S. Y. Alfaifi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
4
|
An Overview of Gadolinium-Based Oxide and Oxysulfide Particles: Synthesis, Properties, and Biomedical Applications. CRYSTALS 2021. [DOI: 10.3390/cryst11091094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade, the publications presenting novel physical and chemical aspects of gadolinium-based oxide (Gd2O3) and oxysulfide (Gd2O2S) particles in the micro- or nano-scale have increased, mainly stimulated by the exciting applications of these materials in the biomedical field. Their optical properties, related to down and upconversion phenomena and the ability to functionalize their surface, make them attractive for developing new probes for selective targeting and emergent bioimaging techniques, either for biomolecule labeling or theranostics. Moreover, recent reports have shown interesting optical behavior of these systems influenced by the synthesis methods, dopant amount and type, particle shape and size, and surface functionality. Hence, this review presents a compilation of the latest works focused on evaluating the optical properties of Gd2O3 and Gd2O2S particles as a function of their physicochemical and morphological properties; and also on their novel applications as MRI contrast agents and drug delivery nanovehicles, discussed along with their administration routes, biodistribution, cytotoxicity, and clearance mechanisms. Perspectives for this field are also identified and discussed.
Collapse
|
5
|
Design and Synthesis of Luminescent Lanthanide-Based Bimodal Nanoprobes for Dual Magnetic Resonance (MR) and Optical Imaging. NANOMATERIALS 2021; 11:nano11020354. [PMID: 33535481 PMCID: PMC7912730 DOI: 10.3390/nano11020354] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/20/2022]
Abstract
Current biomedical imaging techniques are crucial for the diagnosis of various diseases. Each imaging technique uses specific probes that, although each one has its own merits, do not encompass all the functionalities required for comprehensive imaging (sensitivity, non-invasiveness, etc.). Bimodal imaging methods are therefore rapidly becoming an important topic in advanced healthcare. This bimodality can be achieved by successive image acquisitions involving different and independent probes, one for each mode, with the risk of artifacts. It can be also achieved simultaneously by using a single probe combining a complete set of physical and chemical characteristics, in order to record complementary views of the same biological object at the same time. In this scenario, and focusing on bimodal magnetic resonance imaging (MRI) and optical imaging (OI), probes can be engineered by the attachment, more or less covalently, of a contrast agent (CA) to an organic or inorganic dye, or by designing single objects containing both the optical emitter and MRI-active dipole. If in the first type of system, there is frequent concern that at some point the dye may dissociate from the magnetic dipole, it may not in the second type. This review aims to present a summary of current activity relating to this kind of dual probes, with a special emphasis on lanthanide-based luminescent nano-objects.
Collapse
|
6
|
Chemin A, Lam J, Laurens G, Trichard F, Motto-Ros V, Ledoux G, Jarý V, Laguta V, Nikl M, Dujardin C, Amans D. Doping nanoparticles using pulsed laser ablation in a liquid containing the doping agent. NANOSCALE ADVANCES 2019; 1:3963-3972. [PMID: 36132111 PMCID: PMC9419851 DOI: 10.1039/c9na00223e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
While doping of semiconductors or oxides is crucial for numerous technological applications, its control remains difficult especially when the material is reduced down to the nanometric scale. In this paper, we show that pulsed laser ablation of an undoped solid target in an aqueous solution containing activator ions offers a new way to synthesise doped-nanoparticles. The doping efficiency is evaluated for laser ablation of an undoped Gd2O3 target in aqueous solutions of EuCl3 with molar concentration from 10-5 mol L-1 to 10-3 mol L-1. Thanks to luminescence experiments, we show that the europium ions penetrate the core of the synthesised monoclinic Gd2O3 nanoparticles. We also show that the concentration of the activators in the nanoparticles is proportional to the initial concentration in europium ions in the aqueous solution, and a doping of about 1% ([Eu]/[Gd] atomic ratio) is reached. On the one hand, this work could open new ways for the synthesis of doped nanomaterials. On the other hand, it also raises the question of undesired penetration of impurities in laser-generated nanoparticles in liquids.
Collapse
Affiliation(s)
- Arsène Chemin
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| | - Julien Lam
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles Code Postal 231, Boulevard du Triomphe 1050 Brussels Belgium
| | - Gaétan Laurens
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| | - Florian Trichard
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| | - Vincent Motto-Ros
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| | - Gilles Ledoux
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| | - Vítězslav Jarý
- Inst Phys AS CR Cukrovarnicka 10 Prague 16200 Czech Republic
| | - Valentyn Laguta
- Inst Phys AS CR Cukrovarnicka 10 Prague 16200 Czech Republic
| | - Martin Nikl
- Inst Phys AS CR Cukrovarnicka 10 Prague 16200 Czech Republic
| | - Christophe Dujardin
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| | - David Amans
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS, Institut Lumière Matière F-69622 Villeurbanne France
| |
Collapse
|
7
|
Ethylene Glycol Functionalized Gadolinium Oxide Nanoparticles as a Potential Electrochemical Sensing Platform for Hydrazine and p-Nitrophenol. COATINGS 2019. [DOI: 10.3390/coatings9100633] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The current work reports the successful synthesis of ethylene glycol functionalized gadolinium oxide nanoparticles (Gd2O3 Nps) as a proficient electrocatalytic material for the detection of hydrazine and p-nitrophenol. A facile hydrothermal approach was used for the controlled growth of Gd2O3 Nps in the presence of ethylene glycol (EG) as a structure-controlling and hydrophilic coating source. The prepared material was characterized by several techniques in order to examine the structural, morphological, optical, photoluminescence, and sensing properties. The thermal stability, resistance toward corrosion, and decreased tendency toward photobleaching made Gd2O3 nanoparticles a good candidate for the electrochemical sensing of p-nitrophenol and hydrazine by using cyclic voltammetric (CV) and amperometric methods at a neutral pH range. The modified electrode possesses a linear range of 1 to 10 µM with a low detection limit of 1.527 and 0.704 µM for p-nitrophenol and hydrazine, respectively. The sensitivity, selectivity, repeatability, recyclability, linear range, detection limit, and applicability in real water samples made Gd2O3 Nps a favorable nanomaterial for the rapid and effectual scrutiny of harmful environmental pollutants.
Collapse
|
8
|
Park SJ, Park JY, Yang HK, Moon BK, Oh J. Biocompatible sphere, square prism and hexagonal rod Gd2O3:Eu3+@SiO2 nanoparticles: The effect of morphology on multi-modal imaging. Colloids Surf B Biointerfaces 2018; 172:224-232. [DOI: 10.1016/j.colsurfb.2018.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/09/2018] [Accepted: 08/19/2018] [Indexed: 12/27/2022]
|
9
|
Deng H, Chen F, Yang C, Chen M, Li L, Chen D. Effect of Eu doping concentration on fluorescence and magnetic resonance imaging properties of Gd 2O 3:Eu 3+ nanoparticles used as dual-modal contrast agent. NANOTECHNOLOGY 2018; 29:415601. [PMID: 30002260 DOI: 10.1088/1361-6528/aad347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Europium-doped gadolinium oxide (Gd2O3:Eu3+) nanoparticles (NPs) with favorable properties for use in fluorescence imaging (FI) and magnetic resonance imaging (MRI) dual-modal contrast agent has attracted intense attention in biomedical applications. However, limited information is available on balancing FI and MRI by adjusting doping concentrations. In this study, Gd2O3:Eu3+ NPs with various Eu3+ doping concentrations were prepared by the facile and general technique of laser ablation in liquid (LAL). The influence of Eu3+-doping concentration on fluorescence properties and longitudinal relaxivity were investigated. The optimum Eu3+-doping concentration with both high fluorescence properties and longitudinal relaxivity was determined to be 5%. The characterization of the structure, morphology, and composition shows that these NPs possess good crystallinity and excellent dispersibility. These results show that Gd2O3:Eu3+ NPs prepared by LAL are promising candidates for highly efficient FI and MRI dual-modal contrast agents.
Collapse
Affiliation(s)
- Huawei Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
Saha A, Mohanta SC, Deka K, Deb P, Devi PS. Surface-Engineered Multifunctional Eu:Gd 2O 3 Nanoplates for Targeted and pH-Responsive Drug Delivery and Imaging Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4126-4141. [PMID: 28098453 DOI: 10.1021/acsami.6b12804] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In this paper, we report the synthesis of surface-engineered multifunctional Eu:Gd2O3 triangular nanoplates with small size and uniform shape via a high-temperature solvothermal technique. Surface engineering has been performed by a one-step polyacrylate coating, followed by controlled conjugation chemistry. This creates the desired number of surface functional groups that can be used to attach folic acid as a targeting ligand on the nanoparticle surface. To specifically deliver the drug molecules in the nucleus, the folate density on the nanoparticle surface has been kept low. We have also modified the drug molecules with terminal double bond and ester linkage for the easy conjugation of nanoparticles. The nanoparticle surface was further modified with free thiols to specifically attach the modified drug molecules with a pH-responsive feature. High drug loading has been encountered for both hydrophilic drug daunorubicin (∼69% loading) and hydrophobic drug curcumin (∼75% loading) with excellent pH-responsive drug release. These nanoparticles have also been used as imaging probes in fluorescence imaging. Some preliminary experiments to evaluate their application in magnetic resonance imaging have also been explored. A detailed fluorescence imaging study has confirmed the efficient delivery of drugs to the nuclei of cancer cells with a high cytotoxic effect. Synthesized surface-engineered nanomaterials having small hydrodynamic size, excellent colloidal stability, and high drug-loading capacity, along with targeted and pH-responsive delivery of dual drugs to the cancer cells, will be potential nanobiomaterials for various biomedical applications.
Collapse
Affiliation(s)
- Arindam Saha
- Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute , Kolkata 700032, India
| | - Subas Chandra Mohanta
- Sensor and Actuator Division, CSIR-Central Glass and Ceramic Research Institute , Kolkata 700032, India
| | - Kashmiri Deka
- Department of Physics, Tezpur University , Tezpur 784028, India
| | - Pritam Deb
- Department of Physics, Tezpur University , Tezpur 784028, India
| | | |
Collapse
|
11
|
Liu K, Shi X, Wang T, Ai P, Gu W, Ye L. Terbium-doped manganese carbonate nanoparticles with intrinsic photoluminescence and magnetic resonance imaging capacity. J Colloid Interface Sci 2017; 485:25-31. [DOI: 10.1016/j.jcis.2016.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
|
12
|
Shamsutdinova NA, Gubaidullin AT, Odintsov BM, Larsen RJ, Schepkin VD, Nizameev IR, Amirov RR, Zairov RR, Sudakova SN, Podyachev SN, Mustafina AR, Stepanov AS. Polyelectrolyte-Stabilized Nanotemplates Based on Gd(III) Complexes with Macrocyclic Tetra-1,3-diketones as a Positive MR Contrast Agents. ChemistrySelect 2016. [DOI: 10.1002/slct.201600223] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nataliya A. Shamsutdinova
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Kazan Scientific Center of Russian Academy of Sciences; Arbuzov str., 8 420088 Kazan Russia
- Kazan Federal University; Kremlevskaya str., 18 420008 Kazan Russia
| | - Aidar T. Gubaidullin
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Kazan Scientific Center of Russian Academy of Sciences; Arbuzov str., 8 420088 Kazan Russia
| | - Boris M. Odintsov
- Biomedical Imaging Center of the Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; IL61801 USA
- Department of Bioengineering; University of Illinois at Urbana-Champaign; IL61801 USA
| | - Ryan J. Larsen
- Biomedical Imaging Center of the Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; IL61801 USA
| | - Victor D. Schepkin
- Center for Interdisciplinary Magnetic Resonance; National High Magnetic Field Laboratory; Florida State University; Tallahassee, FL 32310 USA
| | - Irek R. Nizameev
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Kazan Scientific Center of Russian Academy of Sciences; Arbuzov str., 8 420088 Kazan Russia
| | - Rustem R. Amirov
- Kazan Federal University; Kremlevskaya str., 18 420008 Kazan Russia
| | - Rustem R. Zairov
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Kazan Scientific Center of Russian Academy of Sciences; Arbuzov str., 8 420088 Kazan Russia
| | - Svetlana N. Sudakova
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Kazan Scientific Center of Russian Academy of Sciences; Arbuzov str., 8 420088 Kazan Russia
| | - Sergey N. Podyachev
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Kazan Scientific Center of Russian Academy of Sciences; Arbuzov str., 8 420088 Kazan Russia
| | - Asiya R. Mustafina
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Kazan Scientific Center of Russian Academy of Sciences; Arbuzov str., 8 420088 Kazan Russia
- Kazan Federal University; Kremlevskaya str., 18 420008 Kazan Russia
| | - Alexey S. Stepanov
- A. E. Arbuzov Institute of Organic and Physical Chemistry; Kazan Scientific Center of Russian Academy of Sciences; Arbuzov str., 8 420088 Kazan Russia
- Kazan Federal University; Kremlevskaya str., 18 420008 Kazan Russia
| |
Collapse
|
13
|
Jain A, Hirata GA, Farías MH, Castillón FF. Synthesis and characterization of (3-Aminopropyl)trimethoxy-silane (APTMS) functionalized Gd2O3:Eu(3+) red phosphor with enhanced quantum yield. NANOTECHNOLOGY 2016; 27:065601. [PMID: 26684579 DOI: 10.1088/0957-4484/27/6/065601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the surface modification of nanocrystalline Gd2O3:Eu(3+) phosphor by (3-Aminopropyl)trimethoxysilane (APTMS). The nanoparticles were first coated with silica using the Stöber process, and then annealed at 650 °C for 2 h. Afterwards, APTMS was functionalized onto the silica layer to obtain Gd2O3:Eu(3+) nanoparticles bearing amine groups on the surface. The effect of silica coating, and the subsequent annealing process on the crystallization of the nanophosphor were analyzed by x-ray diffraction (XRD). High-resolution transmission electron microscopy (HR-TEM) confirmed the presence of a silica layer of ∼45 nm thickness. X-ray photoelectron (XPS) and Fourier transform infrared (FTIR) spectroscopy confirmed the presence of silica and the amine groups. Photoluminescence (PL) analysis demonstrated an increased emission after functionalization of nanoparticles. Absolute quantum yield (QY) measurements revealed an 18% enhancement in QY in functionalized nanoparticles compared with unmodified nanoparticles, which is of great importance for their biomedical applications.
Collapse
Affiliation(s)
- Akhil Jain
- Centro de Investigación Científica y de Educación Superior de Ensenada, Posgrado en Física de Materiales, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, CP 22860, Ensenada, BC Mexico
| | | | | | | |
Collapse
|
14
|
Zhang K, Hou JS, Liu BM, Zhou Y, Yong ZJ, Li LN, Sun HT, Fang YZ. Superbroad near-infrared photoluminescence covering the second biological window achieved by bismuth-doped oxygen-deficient gadolinium oxide. RSC Adv 2016. [DOI: 10.1039/c6ra14389j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrated that bismuth-doped oxygen-deficient gadolinium oxides, produced through a low-temperature topochemical reduction strategy using CaH2 as a solid-state reducing agent, show superbroad NIR PL covering the second biological window.
Collapse
Affiliation(s)
- Kai Zhang
- School of Materials Science and Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Jing-Shan Hou
- School of Materials Science and Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| | - Bo-Mei Liu
- College of Chemistry, Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
- China
| | - Yang Zhou
- College of Chemistry, Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
- China
| | - Zi-Jun Yong
- College of Chemistry, Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
- China
| | - Li-Na Li
- Synchrotron Radiation Facility
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Hong-Tao Sun
- College of Chemistry, Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Soochow University
- Suzhou 215123
- China
| | - Yong-Zheng Fang
- School of Materials Science and Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- China
| |
Collapse
|