Wu S, Khan MA, Huang T, Liu X, Kang R, Zhao H, Cao H, Ye D. Smartphone-assisted colorimetric sensor arrays based on nanozymes for high throughput identification of heavy metal ions in salmon.
JOURNAL OF HAZARDOUS MATERIALS 2024;
480:135887. [PMID:
39305600 DOI:
10.1016/j.jhazmat.2024.135887]
[Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/30/2024] [Accepted: 09/16/2024] [Indexed: 12/01/2024]
Abstract
The rapid, precise, and high-throughput identification of multiple heavy metals ions holds immense importance in ensuring food safety and promoting public health. This study presents a novel smartphone-assisted colorimetric sensor array for the rapid and precise detection of multiple heavy metals ions. The sensor array is based on three signal recognition elements (AuPt@Fe-N-C, AuPt@N-C, and Fe-N-C) and the presence of different heavy metal ions affects the nanozymes-chromogenic substrate (TMB) catalytic color production, enabling the differentiation and quantification of various heavy metal ions. Combined with a smartphone-based RGB mode, the colorimetric sensor array can successfully identify five different heavy metal ions (Hg2+, Pb2+, Co2+, Cr6+, and Fe3+) as low as 0.5 μM and different ratios of binary and ternary mixed heavy metal ions in just 5 min. The sensor array successfully tested seawater and salmon samples with a total heavy metal content of 10 μM in the South China Sea (Haikou and Wenchang). Overall, this study highlights the potential of smartphone-assisted colorimetric sensor arrays for the rapid and precise detection of multiple heavy metal ions, which could significantly contribute to food safety and public health monitoring.
Collapse