Yan G, Han Z, Hou X, Yi S, Zhang Z, Zhou Y, Zhang L. A highly sensitive TiO
2-based molecularly imprinted photoelectrochemical sensor with regulation of imprinted sites by Photo-deposition.
J Colloid Interface Sci 2023;
650:1319-1326. [PMID:
37478749 DOI:
10.1016/j.jcis.2023.07.105]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Molecularly imprinted photoelectrochemical sensors (MIPES) have gained significant attention in the detection field due to their high selectivity and accuracy. However, their sensitivity still needs improvement. Here we developed a TiO2-based MIPES (TiO2 NRs/NiOOH/rMIP) to detect ciprofloxacin (CIP). We identified the photoactive sites of TiO2 by NiOOH photo-deposition and anchored the imprinted sites on the photoactive sites by complexation between CIP and NiOOH. By regulating the imprinted sites, the photocurrent difference before and after the addition of CIP increases and the detection sensitivity of CIP is improved. Moreover, a PN heterojunction is formed between TiO2 and NiOOH, which enables rapid transfer of photoexcited holes and electrons to different semiconductors under the built-in electric field. This leads to improved photoactivity of TiO2 and further increases the sensitivity of MIPES. Compared with sensors prepared by the traditional electro-polymerization CIP and Molecularly imprinted polymers (TiO2 NRs/NiOOH/eMIP), TiO2 NRs/NiOOH/rMIP as constructed in this work displays higher sensitivity, wider linear detection range, and lower limit of detection (LOD). Additionally, TiO2 NRs/NiOOH/rMIP shows good selectivity, stability, and recovery rate, and has a promising application prospect in the actual detection of antibiotics.
Collapse