Wet-Etched Microlens Array for 200 nm Spatial Isolation of Epitaxial Single QDs and 80 nm Broadband Enhancement of Their Quantum Light Extraction.
NANOMATERIALS 2021;
11:nano11051136. [PMID:
33925761 PMCID:
PMC8146877 DOI:
10.3390/nano11051136]
[Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/24/2022]
Abstract
Uniform arrays of three shapes (gauss, hat, and peak) of GaAs microlenses (MLs) by wet-etching are demonstrated, ∼200 nm spatial isolation of epitaxial single QDs embedded (λ: 890–990 nm) and broadband (Δλ∼80 nm) enhancement of their quantum light extraction are obtained, which is also suitable for telecom-band epitaxial QDs. Combined with the bottom distributed Bragg reflector, the hat-shaped ML forms a cavity and achieves the best enhancement: extraction efficiency of 26%, Purcell factor of 2 and single-photon count rate of 7×106 counts per second at the first lens; while the gauss-shaped ML shows a broader band (e.g., longer λ) enhancement. In the MLs, single QDs with featured exciton emissions are observed, whose time correlations prove single-photon emission with multi-photon probability g(2)(0)=0.02; some QDs show both biexciton XX and exciton X emissions and exhibit a perfect cascade feature. This work could pave a step towards a scalable array of QD single-photon sources and the application of QD photon-pair emission for entanglement experiments.
Collapse