1
|
Van Oosten A, Verduyckt C, De Winter J, Gerbaux P, Koeckelberghs G. Influence of the dispersity and molar mass distribution of conjugated polymers on the aggregation type and subsequent chiral expression. SOFT MATTER 2023; 19:3794-3802. [PMID: 37191181 DOI: 10.1039/d3sm00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
This study aims to determine the influence of the dispersity on the aggregation of conjugated polymers and their subsequent chiral expression. Dispersity has been thoroughly investigated for industrial polymerizations, but research on conjugated polymers is lacking. Nonetheless, knowledge thereof is crucial for controlling the aggregation type (type I versus type II) and its influence is therefore investigated. For that purpose, a series of polymers is synthesized via metered initiator addition, resulting in dispersities ranging from 1.18-1.56. The lower dispersity polymers yield type II aggregates and the resulting symmetrical electronic circular dichroism (ECD) spectra while the higher dispersity polymers are predominantly type I due to the longer chains effectively acting as a seed and therefore yield asymmetrical ECD spectra. Furthermore, a monomodal and bimodal molar mass distribution of similar dispersity are compared, demonstrating that bimodal distributions show both aggregation types and therefore more disorder, leading to a decrease in chiral expression.
Collapse
Affiliation(s)
- Annelien Van Oosten
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | - Cynthia Verduyckt
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP) - University of Mons (UMONS), Place du Parc 23, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Center of Innovation and Research in Materials and Polymers (CIRMAP) - University of Mons (UMONS), Place du Parc 23, B-7000 Mons, Belgium
| | - Guy Koeckelberghs
- Laboratory for Polymer Synthesis, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium.
| |
Collapse
|
2
|
Chew KW, Abdul Rahim NA, Teh PL, Abdul Hisam NS, Alias SS. Thermal Degradation of Photoluminescence Poly(9,9-dioctylfluorene) Solvent-Tuned Aggregate Films. Polymers (Basel) 2022; 14:polym14081615. [PMID: 35458365 PMCID: PMC9029415 DOI: 10.3390/polym14081615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023] Open
Abstract
The progression of the green emission spectrum during the decomposition of polyfluorenes (PFs) has impeded the development and commercialization of the materials. Herein, we constructed a solvent-tuned aggregated PFO film with the aim of retarding the material’s thermal degradation behavior which causes a significant decline in optical properties as a result of phase transformation. The tuning of the aggregate amount and distribution was executed by applying a poor alcohol-based solvent in chloroform. It emerges that at a lower boiling point methanol evaporates quickly, limiting the aggregate propagation in the film which gives rise to a more transparent film. Furthermore, because of the modulated β-phase conformation, the absorption spectra of PFO films were red-shifted and broadened. The increase in methanol percentage also led to a rise in β-phase percentage. As for the thermal degradation reactions, both pristine and aggregated PFO films exhibited apparent changes in the UV-Vis spectra and PL spectra. In addition, a 97:3 (chloroform:methanol) aggregated PFO film showed a more defined emission spectrum, which demonstrates that the existence of β-phase is able to suppress the unwanted green emission.
Collapse
Affiliation(s)
- Kang Wei Chew
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; (K.W.C.); (P.L.T.); (N.S.A.H.)
| | - Nor Azura Abdul Rahim
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; (K.W.C.); (P.L.T.); (N.S.A.H.)
- Correspondence:
| | - Pei Leng Teh
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; (K.W.C.); (P.L.T.); (N.S.A.H.)
| | - Nurfatin Syafiqah Abdul Hisam
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia; (K.W.C.); (P.L.T.); (N.S.A.H.)
| | - Siti Salwa Alias
- Advanced Optical Materials Research Group (AOMRG), Department of Physics, Faculty of Science, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia;
| |
Collapse
|
3
|
Nguyen TD, Nguyen VH, Song J, An J, Truong NT, Dang CH, Im C. Molecular Weight-Dependent Physical and Photovoltaic Properties of Poly(3-alkylthiophene)s with Butyl, Hexyl, and Octyl Side-Chains. Polymers (Basel) 2021; 13:3440. [PMID: 34641255 PMCID: PMC8512356 DOI: 10.3390/polym13193440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/17/2022] Open
Abstract
A series of poly-3-alkylthiophenes (P3ATs) with butyl (P3BT), hexyl (P3HT), and octyl (P3OT) side-chains and well-defined molecular weights (MWs) were synthesized using Grignard metathesis polymerization. The MWs of P3HTs and P3OTs obtained via gel permeation chromatography agreed well with the calculated MWs ranging from approximately 10 to 70 kDa. Differential scanning calorimetry results showed that the crystalline melting temperature increased with increasing MWs and decreasing alkyl side-chain length, whereas the crystallinity of the P3ATs increased with the growth of MWs. An MW-dependent red shift was observed in the UV-Vis and photoluminiscence spectra of the P3ATs in solution, which might be a strong evidence for the extended effective conjugation occurring in polymers with longer chain lengths. The photoluminescence quantum yields of pristine films in all polymers were lower than those of the diluted solutions, whereas they were higher than those of the phenyl-C61-butyric acid methyl ester-blended films. The UV-Vis spectra of the films showed fine structures with pronounced red shifts, and the interchain interaction-induced features were weakly dependent on the MW but significantly dependent on the alkyl side-chain length. The photovoltaic device performances of the P3BT and P3HT samples significantly improved upon blending with a fullerene derivative and subsequent annealing, whereas those of P3OTs mostly degraded, particularly after annealing. The optimal power conversion efficiencies of P3BT, P3HT, and P3OT were 2.4%, 3.6%, and 1.5%, respectively, after annealing with MWs of ~11, ~39, and ~38 kDa, respectively.
Collapse
Affiliation(s)
- Thanh-Danh Nguyen
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 5, Ho Chi Minh City 70000, Vietnam;
| | - Van-Hai Nguyen
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| | - Jongwoo Song
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| | - Jongdeok An
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| | - Ngoc-Thuan Truong
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| | - Chi-Hien Dang
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29 Street, Thanh Loc Ward, District 5, Ho Chi Minh City 70000, Vietnam;
| | - Chan Im
- Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (T.-D.N.); (V.-H.N.); (J.S.); (J.A.); (N.-T.T.)
| |
Collapse
|