1
|
Xu X, Ding M, Liu K, Lv F, Miao Y, Liu Y, Gong Y, Huo Y, Li H. The synthesis and highly effective antibacterial properties of Cu-3, 5-dimethy l-1, 2, 4-triazole metal organic frameworks. Front Chem 2023; 11:1124303. [PMID: 36874073 PMCID: PMC9974664 DOI: 10.3389/fchem.2023.1124303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
The influence of metal ions, the state of metal salt, and ligands on the sterilization ability of (Metalorganic frameworks) MOFs to effectively achieve sterilization has been investigated in this study. Initially, the MOFs were synthesized by elements of Zn, Ag, and Cd for the same periodic and main group of Cu. This illustrated that the atomic structure of Cu was more beneficial for coordinating with ligands. To further induce the maximum amount of Cu2+ ions in the Cu-MOFs to achieve the highest sterilization, various Cu-MOFs synthesized by the different valences of Cu, various states of copper salts, and organic ligands were performed, respectively. The results demonstrated that Cu-MOFs synthesized by 3, 5-dimethyl-1, 2, 4-triazole and tetrakis (acetonitrile) copper(I) tetrafluoroborate presented the largest inhibition-zone diameter of 40.17 mm towards Staphylococcus Aureus (S. aureus) under dark conditions. The proposed mechanism of Cu (Ⅱ) in MOFs could significantly cause multiple toxic effects, such as the generation of reactive oxygen species, and lipid peroxidation in S. aureus cells, when the bacteria was anchored by the Cu-MOFs via electrostatic interaction. Finally, the broad antimicrobial properties of Cu-MOFs against Escherichia coli (E. coli), Acinetobacter baumannii (A. baumannii), and S. aureus were demonstrated. In conclusion, the Cu-3, 5-dimethyl-1, 2, 4-triazole MOFs appeared to be potential antibacterial catalysts in the antimicrobial field.
Collapse
Affiliation(s)
- Xiaolin Xu
- Faculty of Chemical and Environmental Science, Key Laboratory of Environment Chemistry, Qujing Normal University, Qujing, Yunnan, China
| | - Mengna Ding
- Faculty of Chemical and Environmental Science, Key Laboratory of Environment Chemistry, Qujing Normal University, Qujing, Yunnan, China
| | - Kaiquan Liu
- Faculty of Chemical and Environmental Science, Key Laboratory of Environment Chemistry, Qujing Normal University, Qujing, Yunnan, China
| | - Fujian Lv
- Faculty of Chemical and Environmental Science, Key Laboratory of Environment Chemistry, Qujing Normal University, Qujing, Yunnan, China
| | - Yingchun Miao
- Faculty of Chemical and Environmental Science, Key Laboratory of Environment Chemistry, Qujing Normal University, Qujing, Yunnan, China
| | - Yanmi Liu
- Faculty of Chemical and Environmental Science, Key Laboratory of Environment Chemistry, Qujing Normal University, Qujing, Yunnan, China
| | - Ying Gong
- Faculty of Chemical and Environmental Science, Key Laboratory of Environment Chemistry, Qujing Normal University, Qujing, Yunnan, China
| | - Yuning Huo
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, China
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, and College of Chemistry and Materials Science, Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, China
| |
Collapse
|
2
|
JIANG Z, FU S, ZHAO W, LIU X, WANG F, CUI M, DONG L. Fabrication of dendritic PdCu alloy supported on 3D N-doped hollow graphene for efficient ethanol electrooxidation. Turk J Chem 2022; 47:207-217. [PMID: 37720852 PMCID: PMC10504011 DOI: 10.55730/1300-0527.3530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/20/2023] [Accepted: 11/29/2022] [Indexed: 02/25/2023] Open
Abstract
Fabricating highly efficient Pd-based nanocatalysts with a well-defined structure is desired for the commercialization of direct ethanol fuel cell (DEFC). Herein, a series of hierarchical three-dimensional N-doped hollow graphene spheres (NHGS) supported dendritic PdCu alloy catalysts PdxCu(d)-NHGS (x: Cu/Pd theoretical molar ratio of 4, 2, and 1) are assembled by one-pot ascorbic acid reduction-immobilization method. Aiming to maximize the Pd utilization and realize the efficient ethanol electrooxidation, this novel electrocatalyst offers potent activity sites and promotes electron and ion kinetics simultaneously. Characterization indicates that the as-obtained Pd4Cu(d) alloy nanoparticles with average sizes of approximately 55 nm are evenly dispersed on the NHGS supporting materials obtained by using the SiO2 nanospheres template strategy. Three catalysts all exhibit enhanced electrocatalytic activity, of which the Pd4Cu(d)-NHGS shows the highest mass current activity (2683 mA mgPd-1), which is 2.59 times of the commercial Pd/C toward ethanol electrooxidation in alkaline medium. Based on the results, we believed that the Pd4Cu(d)-NHGS could exhibit extensive application prospect in alkaline DEFC.
Collapse
Affiliation(s)
| | | | - Wei ZHAO
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Jiangsu,
China
| | - Xvtang LIU
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Jiangsu,
China
| | - Fei WANG
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Jiangsu,
China
| | - Mingyu CUI
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Jiangsu,
China
| | - Linyang DONG
- Jiangsu Province Engineering Research Center of Fine Utilization of Carbon Resources, China University of Mining and Technology, Jiangsu,
China
| |
Collapse
|
3
|
El-Nowihy GH, El-Deab MS. Tailor-designed Pd-Cu-Ni/rGO nanocomposite for efficient glucose electro-oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
4
|
Koryam A, El-Wakeel ST, Radwan EK, Darwish ES, Abdel Fattah AM. One-Step Room-Temperature Synthesis of Bimetallic Nanoscale Zero-Valent FeCo by Hydrazine Reduction: Effect of Metal Salts and Application in Contaminated Water Treatment. ACS OMEGA 2022; 7:34810-34823. [PMID: 36211085 PMCID: PMC9535644 DOI: 10.1021/acsomega.2c03128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/09/2022] [Indexed: 05/25/2023]
Abstract
The effect of initial salt composition on the formation of zero-valent bimetallic FeCo was investigated in this work. Pure crystalline zero-valent FeCo nanoparticles (NPs) were obtained using either chloride or nitrate salts of both metals. Smaller NPs can be obtained using nitrate salts. Comparing the features of the FeCo prepared at room temperature and the solvothermal method revealed that both materials are almost identical. However, the room-temperature method is simpler, quicker, and saves energy. Energy-dispersive X-ray (EDX) analysis of the FeCo NPs prepared using nitrate salts at room temperature demonstrated the absence of oxygen and the presence and uniform distribution of Fe and Co within the structure with the atomic ratio very close to the initially planned one. The particles were sphere-like with a mean particle size of 7 nm, saturation magnetization of 173.32 emu/g, and surface area of 30 m2/g. The removal of Cu2+ and reactive blue 5 (RB5) by FeCo in a single-component system was conformed to the pseudo-first-order and pseudo-second-order models, respectively. The isotherm study confirmed the ability of FeCo for the simultaneous removal of Cu2+ and RB5 with more selectivity toward Cu2+. The RB5 has a synergistic effect on Cu2+ removal, while Cu2+ has an antagonistic effect on RB5 removal.
Collapse
Affiliation(s)
- Asmaa
A. Koryam
- Water
Pollution Research Department, National
Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt
| | - Shaimaa T. El-Wakeel
- Water
Pollution Research Department, National
Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt
| | - Emad K. Radwan
- Water
Pollution Research Department, National
Research Centre, 33 El Buhouth St, Dokki, 12622 Giza, Egypt
| | - Elham S. Darwish
- Department
of Chemistry, Faculty of Science, University
of Cairo, 12613 Giza, Egypt
| | - Azza M. Abdel Fattah
- Department
of Chemistry, Faculty of Science, University
of Cairo, 12613 Giza, Egypt
| |
Collapse
|
5
|
Gholami F, Zinadini S, Kamrani SN, Zinatizadeh AA, Bahrami K. Color removal from wastewater using a synthetic high-performance antifouling GO-CPTMS@Pd-TKHPP/polyether sulfone nanofiltration membrane. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20463-20478. [PMID: 34739672 DOI: 10.1007/s11356-021-16655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Modified graphene oxide with 5,10,15,20-tetrakis-(4-hexyloxyphenyl)-porphyrin and palladium (II) (signified by GO-CPTMS@Pd-TKHPP) prepared as a novel antifouling polyether sulfone (PES) blended nanofiller membrane. The membrane efficiency has been analyzed such as pure water flux (PWF), hydrophilicity, and antifouling features. By increasing of modified graphene oxide percentage from 0 to 0.1 wt.% in the polymer matrix, the PWF was incremented from 14.35 to 37.33 kg/m2·h at 4 bar. The membrane flux recovery ratio (FRR) has been investigated by applying powdered milk solution; the FRR results indicated that the 0.1 wt.%-modified graphene oxide membrane showed a positive effect on fouling behavior with Rir and FRR value 8.24% and 91.76%, respectively. The nanofiltration membrane performance was assessed applying the Direct Red 16 dye rejection. It was demonstrated that the optimal membranes (0.1 wt.%-modified graphene oxide) had notable dye removal (99.58% rejection). The results are also verified by measuring the scanning electron microscopy (SEM), water contact angle (WCA), and atomic microscopy analysis (AFM).
Collapse
Affiliation(s)
- Foad Gholami
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran
| | - Sirus Zinadini
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran.
| | - Soheila Nakhjiri Kamrani
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran
| | - Ali Akbar Zinatizadeh
- Environmental Research Center (ERC), Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran
- Department of Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Kiumars Bahrami
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67149-67346, Iran
| |
Collapse
|
6
|
Kweon Y, Noh S, Shim JH. Low content Ru-incorporated Pd nanowires for bifunctional electrocatalysis. RSC Adv 2021; 11:28775-28784. [PMID: 35478580 PMCID: PMC9038088 DOI: 10.1039/d1ra05577a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023] Open
Abstract
This paper reports the facile synthesis and characterization of carbon supported Pd nanowires with low Ru contents (nRuPd/C). An anti-galvanic replacement reaction involving the reduction of Ru(iii) ions by nanoporous Pd nanowires to form nRuPd alloy nanowires was observed. A series of nRuPd/C materials with various Ru/Pd ratios were prepared by the spontaneous deposition of a Ru cluster on a Pd nanowire core using different Ru precursor concentrations (RuCl3 = 0.5, 1.0, 5.0 mM). The successful formation of low content Ru-incorporated Pd nanowires without individual Ru clusters were confirmed using physicochemical characterization. The electrocatalytic activity of the nRuPd/C for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) in alkaline media was measured by RDE polarization experiments. The electrocatalytic activity varied greatly depending on the Ru content on the Pd nanowires. Among the catalysts, the prepared Pd nanowires incorporated with a very small amount of Ru (ca. 1.4 wt%) exhibited excellent electrocatalytic activity toward the ORR and HER: positive ORR/HER onset and E1/2 potentials, higher n value, and lower Tafel slope. The catalytic activity of Pd nanowires with low Ru contents showed superior bifunctional electrocatalytic performance towards both ORR and HER compared to the benchmarking Pt/C.![]()
Collapse
Affiliation(s)
- Yongdeog Kweon
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Sunguk Noh
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| | - Jun Ho Shim
- Department of Chemistry, Institute of Basic Science, Daegu University Gyeongsan 38453 Republic of Korea
| |
Collapse
|
7
|
A comparative study of Pd/rGO and Pd–Cu/rGO toward electrooxidation of low ethanol concentrations for fuel cell-based breath alcohol analyzer application. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01595-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
|
9
|
Rizo R, Pérez‐Rodríguez S, García G. Well‐Defined Platinum Surfaces for the Ethanol Oxidation Reaction. ChemElectroChem 2019. [DOI: 10.1002/celc.201900600] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rubén Rizo
- Instituto de Materiales y Nanotecnología Departamento de QuímicaUniversidad de La Laguna PO Box 456 38200 La Laguna, Santa Cruz de Tenerife Spain
- Current address: Department of Interface ScienceFritz-Haber Institute of the Max Planck Society Faradayweg 4–6 14195 Berlin Germany
| | | | - Gonzalo García
- Instituto de Materiales y Nanotecnología Departamento de QuímicaUniversidad de La Laguna PO Box 456 38200 La Laguna, Santa Cruz de Tenerife Spain
| |
Collapse
|
10
|
Lim SC, Chan CY, Chen KT, Tuan HY. The shape-controlled synthesis of gallium-palladium (GaPd 2) nanomaterials as high-performance electrocatalysts for the hydrogen evolution reaction. NANOSCALE 2019; 11:8518-8527. [PMID: 30990480 DOI: 10.1039/c8nr10536g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Recently, great efforts have been focused on developing more active and stable Pd-based electrocatalysts to partially or completely replace rare and costly Pt. We developed a facile hot injection method and successfully synthesized well-dispersed and shape-controlled GaPd2 nanomaterials including polyhedrons, nanoparticles and nanowires. All the as-synthesized catalysts exhibit superior HER activity compared to commercial pure Pd catalysts and are stable in acidic media. Among them, the GaPd2 nanoparticles required only 24.3 mV overpotential to achieve a 10 mA cm-2 current density, which is outstanding compared to most Pt-based nanomaterials. Also, cycling tests over 10 000 CV sweep cycles (-0.3 to 0.2 vs. RHE) and durability testing for 24 hours were applied, with the GaPd2 catalysts exhibiting similar i-V curves and stable current densities to those obtained in the initial tests. We further evaluated the mass activities of the GaPd2 catalysts, and it is fascinating that the GaPd2 polyhedrons, nanoparticles and nanowires achieved factors of 3.7, 5 and 2.3 enhancement in mass activity at -0.1 V vs. RHE compared with a commercial Pd black catalyst. Meanwhile, with the assistance of a reduced graphene oxide (rGO) support, the GaPd2 nanoparticles/rGO (20 wt%) electrocatalyst presents outstanding HER activity comparable with that of a carbon-supported Pt catalyst (20% Pt/C). This work provides an avenue to develop effective and stable Pd-based catalysts with reduced Pd usage and high HER performance.
Collapse
Affiliation(s)
- Suh-Ciuan Lim
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan 30013, Republic of China.
| | | | | | | |
Collapse
|
11
|
Stability, structural and electronic properties of ternary Pd Au Ag clusters (x + y + z = 7): A theoretical study. COMPUT THEOR CHEM 2018. [DOI: 10.1016/j.comptc.2018.03.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|