1
|
Min J, Wang Y, Park TY, Wang D, Janjua B, Jeong D, Kim GS, Sun H, Zhao C, Mendes JC, Correia MRP, Carvalho DF, Cardoso JPS, Wang Q, Zhang H, Ng TK, Ooi BS. Bottom-Up Formation of III-Nitride Nanowires: Past, Present, and Future for Photonic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2405558. [PMID: 39434490 DOI: 10.1002/adma.202405558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/23/2024] [Indexed: 10/23/2024]
Abstract
The realization of semiconductor heterostructures marks a significant advancement beyond silicon technology, driving progress in high-performance optoelectronics and photonics, including high-brightness light emitters, optical communication, and quantum technologies. In less than a decade since 1997, nanowires research has expanded into new application-driven areas, highlighting a significant shift toward more challenging and exploratory research avenues. It is therefore essential to reflect on the past motivations for nanowires development, and explore the new opportunities it can enable. The advancement of heterogeneous integration using dissimilar substrates, materials, and nanowires-semiconductor/electrolyte operating platforms is ushering in new research frontiers, including the development of perovskite-embedded solar cells, photoelectrochemical (PEC) analog and digital photonic systems, such as PEC-based photodetectors and logic circuits, as well as quantum elements, such as single-photon emitters and detectors. This review offers rejuvenating perspectives on the progress of these group-III nitride nanowires, aiming to highlight the continuity of research toward high impact, use-inspired research directions in photonics and optoelectronics.
Collapse
Affiliation(s)
- Jungwook Min
- Department of Optical Engineering, Kumoh National Institute of Technology, Gumi, 39253, Republic of Korea
| | - Yue Wang
- Photonics Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tae-Yong Park
- Photonics Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Danhao Wang
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Bilal Janjua
- Photonics Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Dasom Jeong
- Department of Optical Engineering, Kumoh National Institute of Technology, Gumi, 39253, Republic of Korea
| | - Gyun Seo Kim
- Department of Optical Engineering, Kumoh National Institute of Technology, Gumi, 39253, Republic of Korea
| | - Haiding Sun
- iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chao Zhao
- Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 101804, China
| | | | - Maria Rosário P Correia
- Departamento de Física & i3N, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Diogo F Carvalho
- International Iberian Nanotechnology Laboratory, Braga, 4715-330, Portugal
| | - José P S Cardoso
- Departamento de Física & i3N, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal
| | - Qingxiao Wang
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Huafan Zhang
- Photonics Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tien Khee Ng
- Photonics Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, Electrical and Computer Engineering Program, Division of Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
2
|
R S, Kumar SN, M MR, Pattar J, B V DR. Investigating the effect of acidic and basic precipitation on the antibacterial activity of ZnO nanoparticles against Gram-negative and Gram-positive bacteria. J Mater Chem B 2024; 12:2180-2196. [PMID: 38323518 DOI: 10.1039/d3tb02119j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
In the present work, acidic (direct) and basic precipitation (indirect) methods were used to demonstrate the influence of the mode of precipitation on the structural properties of ZnO nanoparticles (NPs). Four samples of ZnO nanoparticles were prepared, two samples via each mode of precipitation. DZOa and IZOa were the aged samples prepared via acidic and basic precipitation methods, and DZOwa and IZOwa were processed without aging. Both precipitation processes were carried out without using any surfactant reagents. Zinc hydroxide precipitate, which was formed during the basic precipitation method, could be critical in deciding the properties of ZnO NPs, unlike zinc hydroxide formed during acidic precipitation. Aging of zinc hydroxide, synthesised by basic precipitation method for 48 hours was found to be an added advantage in controlling the properties of ZnO NPs. The influence of the mode of precipitation on the structural properties and antibacterial activity of ZnO NPs against Gram-positive and Gram-negative bacterial strains was tested. The antibacterial activity of all four ZnO NPs was analysed via zone of inhibition measurements at a concentration dose of 200 μg ml-1. IZOa nanoparticles prepared using the basic precipitation method showed a higher antibacterial activity against three Gram-negative and one Gram-positive strains, namely, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. DZOa nanoparticles synthesized through acidic precipitation showed relatively high antibacterial activity against Salmonella typhimurium, a Gram-negative strain. ZnO NPs prepared without aging, IZOwa and DZOwa, showed a higher antibacterial activity against E. coli and Bacillus sp. strains, respectively. All ZnO NPs were characterized via UV-visible, FTIR, XRD, and HRSEM techniques.
Collapse
Affiliation(s)
- Sreekanth R
- Department of Chemistry, REVA University, Bengaluru, Karnataka, India.
| | - S Naveen Kumar
- Department of Chemistry, REVA University, Bengaluru, Karnataka, India.
| | | | - Jayadev Pattar
- Department of Physics, REVA University, Bengaluru, Karnataka, India
| | - Damodar Reddy B V
- Department of Biotechnology, REVA University, Bengaluru, Karnataka, India
| |
Collapse
|
3
|
Lee KJ, Nakazato Y, Chun J, Wen X, Meng C, Soman R, Noshin M, Chowdhury S. Nanoporous GaN on p-type GaN: a Mg out-diffusion compensation layer for heavily Mg-doped p-type GaN. NANOTECHNOLOGY 2022; 33:505704. [PMID: 36103775 DOI: 10.1088/1361-6528/ac91d7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Embeddingp-type gallium nitride (p-GaN) with controlled Mg out-diffusion in adjacent epitaxial layers is a key for designing various multi-junction structures with high precision and enabling more reliable bandgap engineering of III-nitride-based optoelectronics and electronics. Here, we report, for the first time, experimental evidence of how nanoporous GaN (NP GaN) can be introduced as a compensation layer for the Mg out-diffusion fromp-GaN. NP GaN onp-GaN provides anex-situformed interface with oxygen and carbon impurities, compensating for Mg out-diffusion fromp-GaN. To corroborate our findings, we used two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN as the indicator to study the impact of the Mg out-diffusion from underlying layers. Electron concentration evaluated from the capacitance-voltage measurement shows that 9 × 1012cm-2of carriers accumulate in the AlGaN/GaN 2DEG structure grown on NP GaN, which is the almost same number of carriers as that grown with nop-GaN. In contrast, 2DEG onp-GaN without NP GaN presents 9 × 109cm-2of the electron concentration, implying the 2DEG structure is depleted by Mg out-diffusion. The results address the efficacy of NP GaN and its' role in successfully embeddingp-GaN in multi-junction structures for various state-of-the-art III-nitride-based devices.
Collapse
Affiliation(s)
- Kwang Jae Lee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Yusuke Nakazato
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Jaeyi Chun
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Xinyi Wen
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Chuanzhe Meng
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Rohith Soman
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Maliha Noshin
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| | - Srabanti Chowdhury
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, United States of America
| |
Collapse
|
4
|
Ren F, Liu B, Chen Z, Yin Y, Sun J, Zhang S, Jiang B, Liu B, Liu Z, Wang J, Liang M, Yuan G, Yan J, Wei T, Yi X, Wang J, Zhang Y, Li J, Gao P, Liu Z, Liu Z. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. SCIENCE ADVANCES 2021; 7:eabf5011. [PMID: 34330700 PMCID: PMC8324058 DOI: 10.1126/sciadv.abf5011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/15/2021] [Indexed: 05/21/2023]
Abstract
Van der Waals epitaxy provides a fertile playground for the monolithic integration of various materials for advanced electronics and optoelectronics. Here, a previously unidentified nanorod-assisted van der Waals epitaxy is developed and nearly single-crystalline GaN films are first grown on amorphous silica glass substrates using a graphene interfacial layer. The epitaxial GaN-based light-emitting diode structures, with a record internal quantum efficiency, can be readily lifted off, becoming large-size flexible devices. Without the effects of the potential field from a single-crystalline substrate, we expect this approach to be equally applicable for high-quality growth of nitrides on arbitrary substrates. Our work provides a revolutionary technology for the growth of high-quality semiconductors, thus enabling the hetero-integration of highly mismatched material systems.
Collapse
Affiliation(s)
- Fang Ren
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bingyao Liu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhaolong Chen
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yue Yin
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Shuo Zhang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei Jiang
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingzhi Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Zhetong Liu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jianwei Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Meng Liang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guodong Yuan
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianchang Yan
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbo Wei
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyan Yi
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junxi Wang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Zhang
- Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Jinmin Li
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Zhiqiang Liu
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Soopy AKK, Li Z, Tang T, Sun J, Xu B, Zhao C, Najar A. In(Ga)N Nanostructures and Devices Grown by Molecular Beam Epitaxy and Metal-Assisted Photochemical Etching. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E126. [PMID: 33430484 PMCID: PMC7827665 DOI: 10.3390/nano11010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 02/01/2023]
Abstract
This review summarizes the recent research on nitride nanostructures and their applications. We cover recent advances in the synthesis and growth of porous structures and low-dimensional nitride nanostructures via metal-assisted photochemical etching and molecular beam epitaxy. The growth of nitride materials on various substrates, which improves their crystal quality, doping efficiency, and flexibility of tuning performance, is discussed in detail. Furthermore, the recent development of In(Ga)N nanostructure applications (light-emitting diodes, lasers, and gas sensors) is presented. Finally, the challenges and directions in this field are addressed.
Collapse
Affiliation(s)
- Abdul Kareem K. Soopy
- Department of Physics, College of Science, United Arab Emirates University, Al Ain 15551, UAE;
| | - Zhaonan Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Tianyi Tang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences & Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China; (T.T.); (J.S.); (B.X.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing 101804, China
| | - Jiaqian Sun
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences & Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China; (T.T.); (J.S.); (B.X.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing 101804, China
| | - Bo Xu
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences & Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China; (T.T.); (J.S.); (B.X.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing 101804, China
| | - Chao Zhao
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences & Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China; (T.T.); (J.S.); (B.X.)
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Science, Beijing 101804, China
| | - Adel Najar
- Department of Physics, College of Science, United Arab Emirates University, Al Ain 15551, UAE;
| |
Collapse
|
6
|
Prabaswara A, Min JW, Subedi RC, Tangi M, Holguin-Lerma JA, Zhao C, Priante D, Ng TK, Ooi BS. Direct Growth of Single Crystalline GaN Nanowires on Indium Tin Oxide-Coated Silica. NANOSCALE RESEARCH LETTERS 2019; 14:45. [PMID: 30721361 PMCID: PMC6363810 DOI: 10.1186/s11671-019-2870-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
In this work, we demonstrated the direct growth of GaN nanowires on indium tin oxide (ITO)-coated fused silica substrate. The nanowires were grown catalyst-free using plasma-assisted molecular beam epitaxy (PA-MBE). The effect of growth condition on the morphology and quality of the nanowires is systematically investigated. Structural characterization indicates that the nanowires grow in the (0001) direction directly on top of the ITO layer perpendicular to the substrate plane. Optical characterization of the nanowires shows that yellow luminescence is absent from the nanowire's photoluminescence response, attributed to the low number of defects. Conductive atomic force microscopy (C-AFM) measurement on n-doped GaN nanowires shows good conductivity for individual nanowires, which confirms the potential of using this platform for novel device applications. By using a relatively low-temperature growth process, we were able to successfully grow high-quality single-crystal GaN material without the degradation of the underlying ITO layer.
Collapse
Affiliation(s)
- Aditya Prabaswara
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jung-Wook Min
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ram Chandra Subedi
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Malleswararao Tangi
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jorge A Holguin-Lerma
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Chao Zhao
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Davide Priante
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Tien Khee Ng
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Boon S Ooi
- Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|