1
|
Zhang S, Zhang R, Yan X, Fan K. Nanozyme-Based Artificial Organelles: An Emerging Direction for Artificial Organelles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202294. [PMID: 35869033 DOI: 10.1002/smll.202202294] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Artificial organelles are compartmentalized nanoreactors, in which enzymes or enzyme-mimic catalysts exhibit cascade catalytic activities to mimic the functions of natural organelles. Importantly, research on artificial organelles paves the way for the bottom-up design of synthetic cells. Due to the separation effect of microcompartments, the catalytic reactions of enzymes are performed without the influence of the surrounding medium. The current techniques for synthesizing artificial organelles rely on the strategies of encapsulating enzymes into vesicle-structured materials or reconstituting enzymes onto the microcompartment materials. However, there are still some problems including limited functions, unregulated activities, and difficulty in targeting delivery that hamper the applications of artificial organelles. The emergence of nanozymes (nanomaterials with enzyme-like activities) provides novel ideas for the fabrication of artificial organelles. Compared with natural enzymes, nanozymes are featured with multiple enzymatic activities, higher stability, easier to synthesize, lower cost, and excellent recyclability. Herein, the most recent advances in nanozyme-based artificial organelles are summarized. Moreover, the benefits of compartmental structures for the applications of nanozymes, as well as the functional requirements of microcompartment materials are also introduced. Finally, the potential applications of nanozyme-based artificial organelles in biomedicine and the related challenges are discussed.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
2
|
Li H, Chen X, Shen D, Wu F, Pleixats R, Pan J. Functionalized silica nanoparticles: classification, synthetic approaches and recent advances in adsorption applications. NANOSCALE 2021; 13:15998-16016. [PMID: 34546275 DOI: 10.1039/d1nr04048k] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanotechnology is rapidly sweeping through all the vital fields of science and technology such as electronics, aerospace, defense, medicine, and catalysis. It involves the design, synthesis, characterization, and applications of materials and devices on the nanometer scale. At the nanoscale, physical and chemical properties differ from the properties of the individual atoms and molecules of bulk matter. In particular, the design and development of silica nanomaterials have captivated the attention of several researchers worldwide. The applications of hybrid silicas are still limited by the lack of control on the morphology and particle size. The ability to control both the size and morphology of the materials and to obtain nano-sized silica particles has broadened the spectrum of applications of mesoporous organosilicas and/or has improved their performances. On the other hand, adsorption is a widely used technique for the separation and removal of pollutants (metal ions, dyes, organics,...) from wastewater. Silica nanoparticles have specific advantages over other materials for adsorption applications due to their unique structural characteristics: a stable structure, a high specific surface area, an adjustable pore structure, the presence of silanol groups on the surface which allow easy modification, less environmental harm, simple synthesis, low cost, etc. Silica nanoparticles are potential adsorbents for pollutants. We present herein an overview of the different types of silica nanoparticles going from the definitions to properties, synthetic approaches and the mention of potential applications. We focus mainly on the recent advances in the adsorption of different target substances (metal ions, dyes and other organics).
Collapse
Affiliation(s)
- Hao Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
- Anhui Laboratory of Molecules-Based Materials, College of Chemistry and Materials Sciences, Anhui Normal University, Wuhu 241002, Anhui, China
| | - Xueping Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Danqing Shen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Fan Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Qian X, Nymann Westensee I, Brodszkij E, Städler B. Cell mimicry as a bottom-up strategy for hierarchical engineering of nature-inspired entities. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1683. [PMID: 33205632 DOI: 10.1002/wnan.1683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Artificial biology is an emerging concept that aims to design and engineer the structure and function of natural cells, organelles, or biomolecules with a combination of biological and abiotic building blocks. Cell mimicry focuses on concepts that have the potential to be integrated with mammalian cells and tissue. In this feature article, we will emphasize the advancements in the past 3-4 years (2017-present) that are dedicated to artificial enzymes, artificial organelles, and artificial mammalian cells. Each aspect will be briefly introduced, followed by highlighting efforts that considered key properties of the different mimics. Finally, the current challenges and opportunities will be outlined. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Xiaomin Qian
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
4
|
Wen L, Lv G, Zhao J, Lu S, Gong Y, Li Y, Zheng H, Chen B, Gao H, Tian C, Wang J. In vitro and in vivo Effects of Artesunate on Echinococcus granulosus Protoscoleces and Metacestodes. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4685-4694. [PMID: 33173278 PMCID: PMC7646440 DOI: 10.2147/dddt.s254166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/19/2020] [Indexed: 01/23/2023]
Abstract
Background In this study, we aim to investigate the efficiency of artesunate (AS) on Echinococcus granulosus protoscoleces and metacestodes. Methods For the in vitro assay, the eosin dye exclusion test and transmission electron microscope (TEM) were utilized to evaluate the effects of AS against protoscoleces (PSCs) from Echinococcus granulosus. In addition, mortality, ultrastructure change, reactive oxygen species (ROS) content and DNA damage were measured in order to explore the anti-echinococcosis mechanism of AS. For the in vivo assay, CE-infected mice were divided into model group, albendazole (ABZ) group (200 mg/kg), low AS (AS-L) group (50 mg/kg), moderate AS (AS-M) group (100 mg/kg), and high AS (AS-H) group (200 mg/kg). Upon 6 weeks oral administration, wet weight of cysts and the ultrastructural changes of cystic wall were utilized to evaluate the effects of AS on metacestodes. In addition, the liver biochemical parameters, tumor necrosis factor-α (TNF-α), glutathione/glutathione oxidized (GSH/GSSG) ratio in serum, and H2O2, total superoxide dismutase (T-SOD) in cyst fluid were detected. Results Both in vivo and in vitro experiments showed that AS showed anti-parasitic effects on CE. The AS could elevate the ROS level in the PSCs, which then resulted in obvious DNA damages. AS could significantly improve the liver biochemical parameters in infected mice compared with the model group (P < 0.05). Compared with the model group, AS-M and AS-H decrease the TNF-α content (P < 0.05); AS-H group significantly decrease in the serum GSH/GSSG ratio (P < 0.05). The content of H2O2 in hydatid fluid treated by AS showed significant decrease compared with the model group (P < 0.01), while the T-SOD level showed significant elevation compared with model group (P < 0.01). Conclusion In this study, we confirmed that the effects of AS on Echinococcus granulosus protoscoleces and metacestodes may be related to the DNA damages induced by oxidative stress, which provided solid information for the research and development of drugs for cystic echinococcosis.
Collapse
Affiliation(s)
- Limei Wen
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Guodong Lv
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China.,Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Jun Zhao
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Shuai Lu
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Yuehong Gong
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Yafen Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Haiya Zheng
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Bei Chen
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Huijing Gao
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| | - Chunyan Tian
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, People's Republic of China
| | - Jianhua Wang
- Pharmaceutical Department, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, People's Republic of China.,State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Urumqi 830054, People's Republic of China
| |
Collapse
|
5
|
Brodszkij E, Westensee IN, Bertelsen M, Gal N, Boesen T, Städler B. Polymer-Lipid Hybrid Vesicles and Their Interaction with HepG2 Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906493. [PMID: 32468702 DOI: 10.1002/smll.201906493] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Polymer-lipid hybrid vesicles are an emerging type of nano-assemblies that show potential as artificial organelles among others. Phospholipids and poly(cholesteryl methacrylate)-block-poly(methionine methacryloyloxyethyl ester (METMA)-random-2-carboxyethyl acrylate (CEA)) labeled with a Förster resonance energy transfer (FRET) reporter pair are used for the assembly of small and giant hybrid vesicles with homogenous distribution of both building blocks in the membrane as confirmed by the FRET effect. These hybrid vesicles have no inherent cytotoxicity when incubated with HepG2 cells up to 1.1 × 1011 hybrid vesicles per mL, and they are internalized by the cells. In contrast to the fluorescent signal originating from the block copolymer, the fluorescent signal coming from the lipids is barely detectable in cells incubated with hybrid vesicles for 6 h followed by 24 h in cell media, suggesting that the two building blocks have a different intracellular fate. These findings provide important insight into the design criteria of artificial organelles with potential structural integrity.
Collapse
Affiliation(s)
- Edit Brodszkij
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Isabella N Westensee
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Mathias Bertelsen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Noga Gal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
6
|
Cheng CS, Liu TP, Chien FC, Mou CY, Wu SH, Chen YP. Codelivery of Plasmid and Curcumin with Mesoporous Silica Nanoparticles for Promoting Neurite Outgrowth. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15322-15331. [PMID: 30986029 DOI: 10.1021/acsami.9b02797] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reactive oxygen species (ROS)-induced oxidative stress leads to neuron damage and is involved in the pathogenesis of chronic inflammation in neurodegenerative diseases (NDs), such as Alzheimer's, Parkinson's, and amyotrophic lateral sclerosis. Researchers, therefore, are looking for antiinflammatory drugs and gene therapy approaches to slow down or even prevent neurological disorders. Combining therapeutics has shown a synergistic effect in the treatment of human diseases. Many nanocarriers could be designed for the simultaneous codelivery of drugs with genes to fight diseases. However, only a few researches have been performed in NDs. In this study, we developed a mesoporous silica nanoparticle (MSN)-based approach for neurodegenerative therapy. This MSN-based platform involved multiple designs in the targeted codelivery of (1) curcumin, a natural antioxidant product, to protect ROS-induced cell damage and (2) plasmid RhoG-DsRed, which is associated with the formation of lamellipodia and filopodia for promoting neurite outgrowth. At the same time, TAT peptide was introduced to the plasmid RhoG-DsRed via electrostatic interaction to elevate the efficiency of nonendocytic pathways and the nuclear plasmid delivery of RhoG-DsRed in cells for enhanced gene expression. Besides, such a plasmid RhoG-DsRed/TAT complex could work as a noncovalent gatekeeper. The release of curcumin inside the channel of the MSN could be triggered when the complex was dissociated from the MSN surface. Taken together, this MSN-based platform combining genetic and pharmacological manipulations of an actin cytoskeleton as well as oxidative stress provides an attractive way for ND therapy.
Collapse
Affiliation(s)
- Cheng-Shun Cheng
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | - Tsang-Pai Liu
- Mackay Junior College of Medicine, Nursing and Management , Taipei 112 , Taiwan
- Department of Surgery , Mackay Memorial Hospital , Taipei 104 , Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics , National Central University , Chung-Li 320 , Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry , National Taiwan University , Taipei 106 , Taiwan
| | | | | |
Collapse
|