1
|
Ma J, Ouyang C, Niu L, Wang Q, Zhao J, Liu Y, Liu L, Xu Q, Li Y, Gu J, Tian Z, Han J, Zhang W. Topological edge state bandwidth tuned by multiple parameters in two-dimensional terahertz photonic crystals with metallic cross structures. OPTICS EXPRESS 2021; 29:32105-32113. [PMID: 34615288 DOI: 10.1364/oe.440121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Originating from the study of topological photonic crystals (TPCs), analogues of the quantum spin Hall effect have been used as a potential way to control the propagation of electromagnetic waves. Due to the topological robustness of the spin TPCs, the edge states along the interface between the trivial and topological areas are topologically protected and not reflected from structural defects and disorders. Here, on the basis of the time-spatial reversal symmetry and topological defect theory, we demonstrate broadening of the edge state bandwidth in spin TPCs made of regular metallic cross structures by simultaneously deforming the hexagonal honeycomb lattice and adjusting the rotation angle. Due to the simultaneous tuning of the two parameters, the designed spin TPCs possess more flexibility. Topologically protected one-way propagating edge states are observed in the terahertz regime, where electromagnetic waves propagate along sharp corners without backscattering. Our findings offer the potential application for topological devices in terahertz technology and are beneficial for the development of 6G mobile communications.
Collapse
|
2
|
Directional Elastic Pseudospin and Nonseparability of Directional and Spatial Degrees of Freedom in Parallel Arrays of Coupled Waveguides. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We experimentally and numerically investigated elastic waves in parallel arrays of elastically coupled one-dimensional acoustic waveguides composed of aluminum rods coupled along their length with epoxy. The elastic waves in each waveguide take the form of superpositions of states in the space of direction of propagation. The direction of propagation degrees of freedom is analogous to the polarization of a quantum spin; hence, these elastic waves behave as pseudospins. The amplitude in the different rods of a coupled array of waveguides (i.e., the spatial mode of the waveguide array) refer to the spatial degrees of freedom. The elastic waves in a parallel array of coupled waveguides are subsequently represented as tensor products of the elastic pseudospin and spatial degrees of freedom. We demonstrate the existence of elastic waves that are nonseparable linear combinations of tensor products states of pseudospin/ spatial degrees of freedom. These elastic waves are analogous to the so-called Bell states of quantum mechanics. The amplitude coefficients of the nonseparable linear combination of states are complex due to the Lorentzian character of the elastic resonances associated with these waves. By tuning through the amplitudes, we are able to navigate both experimentally and numerically a portion of the Bell state Hilbert space.
Collapse
|
3
|
Xiong L, Forsythe C, Jung M, McLeod AS, Sunku SS, Shao YM, Ni GX, Sternbach AJ, Liu S, Edgar JH, Mele EJ, Fogler MM, Shvets G, Dean CR, Basov DN. Photonic crystal for graphene plasmons. Nat Commun 2019; 10:4780. [PMID: 31636265 PMCID: PMC6803641 DOI: 10.1038/s41467-019-12778-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022] Open
Abstract
Photonic crystals are commonly implemented in media with periodically varying optical properties. Photonic crystals enable exquisite control of light propagation in integrated optical circuits, and also emulate advanced physical concepts. However, common photonic crystals are unfit for in-operando on/off controls. We overcome this limitation and demonstrate a broadly tunable two-dimensional photonic crystal for surface plasmon polaritons. Our platform consists of a continuous graphene monolayer integrated in a back-gated platform with nano-structured gate insulators. Infrared nano-imaging reveals the formation of a photonic bandgap and strong modulation of the local plasmonic density of states that can be turned on/off or gradually tuned by the applied gate voltage. We also implement an artificial domain wall which supports highly confined one-dimensional plasmonic modes. Our electrostatically-tunable photonic crystals are derived from standard metal oxide semiconductor field effect transistor technology and pave a way for practical on-chip light manipulation. Traditional photonic crystals consist of periodic media with a pre-defined optical response. Here, the authors combine nanostructured back-gate insulators with a continuous layer of graphene to demonstrate an electrically tunable two-dimensional photonic crystal suitable for controlling the propagation of surface plasmon polaritons.
Collapse
Affiliation(s)
- L Xiong
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - C Forsythe
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - M Jung
- Department of Physics, Cornell University, Ithaca, NY, 14853, USA
| | - A S McLeod
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - S S Sunku
- Department of Physics, Columbia University, New York, NY, 10027, USA.,Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Y M Shao
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - G X Ni
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - A J Sternbach
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - S Liu
- The Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - J H Edgar
- The Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KS, 66506, USA
| | - E J Mele
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M M Fogler
- Department of physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - G Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, 14853, USA
| | - C R Dean
- Department of Physics, Columbia University, New York, NY, 10027, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
4
|
Experimental demonstration of coherent superpositions in an ultrasonic pseudospin. Sci Rep 2019; 9:14156. [PMID: 31578347 PMCID: PMC6775046 DOI: 10.1038/s41598-019-50366-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 09/09/2019] [Indexed: 11/08/2022] Open
Abstract
We experimentally demonstrate the existence and control of coherent superpositions of elastic states in the direction of propagation of an ultrasonic pseudospin i.e., a φ-bit. The experimental realization of this mechanical pseudospin consists of an elastic aluminum rod serving as a waveguide sandwiched between two heavy steel plates. The Hertzian contact between the rod and the plates leads to restoring forces which couple the directions of propagation (forward and backward). This coupling generates the coherence of the superposition of elastic states. We also demonstrate φ-bit gate operations on the coherent superposition analogous to those used in quantum computing. In the case of a φ-bit, the coherent superposition of states in the direction of propagation are immune to wave function collapse upon measurement as they result from classical waves.
Collapse
|