1
|
Ganguly S, Basera P, Ahmed S, Saha S, Dutta A, Loha C, Ghosh S. Trace Ru Incorporation Boosted Co 2P Nanorods for Superior Water Electrolysis and Substrate-Paired Electrolysis Toward Value-Added Chemicals in Alkaline Medium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405056. [PMID: 39449551 DOI: 10.1002/smll.202405056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Indexed: 10/26/2024]
Abstract
Electro-valorization of biomass-derived chemicals has ensured sustainable production of value-added products, an effective approach for reducing carbon footprint, through renewable energy. Electrochemical oxidation and reduction reactions in aqueous media using H2O as a potential source for active hydrogenated and oxygenated species fulfill the purpose. In this study, Ru─Co2P nanorods are explored as a bifunctional electrocatalyst toward valorization of Organics at basic media. The in-situ electrogenerated Co3+ and Co4+ species act as active oxidants toward product selectivity. An overpotential of 68 mV is found for hydrogen evolution reaction (1 m NaOH) with Ru─Co2P. Further, used as cathode, Ru─Co2P effectively reduces furfuraldehyde to furfuryl alcohol and p-nitrophenol to p-aminophenol. Ru doping enables ease of formation of active species both for reduction and oxidation, faster charge transfer between catalyst to absorbates. Density Functional Theory calculation establishes Ru incorporation in Co2P surface results in enhanced adsorption of substrates. Ru doping modulates the electronic structure of Co2P which changes the density of states resulting in faster water dissociation and water splitting. To reach 10 mA cm-2 current density only 1.6 V is required for water electrolysis, whereas 1.4 V is enough for substrate-paired electrolysis with simultaneous oxidation of benzyl alcohol and reduction of p-nitro phenol.
Collapse
Affiliation(s)
- Souradip Ganguly
- Energy Research & Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Basera
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sahnawaz Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, Kolkata, 700054, India
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Chanchal Loha
- Energy Research & Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| | - Sirshendu Ghosh
- Energy Research & Technology Group, CSIR-Central Mechanical Engineering Research Institute, Durgapur, West Bengal, 713209, India
| |
Collapse
|
2
|
Sumit, Borah A, Palaniyappan S, Rajeshkhanna G. ZIF-67-derived Co-N-C supported nickel cobalt sulfide as a bifunctional electrocatalyst for sustainable hydrogen production via alkaline electrolysis. NANOSCALE 2024; 16:14020-14032. [PMID: 38989674 DOI: 10.1039/d4nr01196a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
As non-renewable resources are finite and cannot be utilized indefinitely, hydrogen (H2) has emerged as a promising alternative for clean and sustainable energy. The cost-effective hydrogen production to meet large-scale commercial demand poses a significant challenge. Water electrolysis, powered by electricity derived from renewable resources, stands out as a viable route towards sustainable hydrogen production, with electrocatalysis playing a pivotal role in this process. Notably, materials derived from metal-organic frameworks (MOFs) exhibit excellent physicochemical properties, making them promising candidates for electrocatalysis. In this study, we synthesized zeolitic imidazolate framework-67 (ZIF-67) and its derived Co-N-doped carbon (Co-N-C) supported NiCo2S4 on nickel foam (NF), namely NF@ZIF-67@NiCo2S4 and NF@Co-N-C@NiCo2S4, using a hydrothermal method. The electrocatalytic activity of these synthesized materials for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was systematically evaluated using various electrochemical techniques. The NF@ZIF-67@NiCo2S4 material demonstrates overpotentials of 248 and 359 mV for OER and HER at the current density of 50 mA cm-2, whereas, NF@Co-N-C@NiCo2S4 exhibits overpotentials of 239 and 351 mV, respectively. Furthermore, the catalysts exhibit excellent stability in both OER and HER even under high applied potentials. Moreover, to assess their catalytic performance in a full-cell configuration, two alkaline electrolyzer cells were assembled: NF@ZIF-67@NiCo2S4(+)∥NF@ZIF-67@NiCo2S4(-) and NF@Co-N-C@NiCo2S4(+)∥NF@Co-N-C@NiCo2S4(-). These two electrolyzers demonstrated cell potentials of 1.62 V and 1.59 V at 10 mA cm-2, respectively, showcasing their efficacy in overall water-splitting.
Collapse
Affiliation(s)
- Sumit
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| | - Apurba Borah
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| | - Sathishkumar Palaniyappan
- Department of Physics, Centre for Functional Materials, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, India
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda-506004, Telangana, India.
| |
Collapse
|
3
|
Meher NK, Suryavansi M, Geetharani K. Regioselective Hydroboration of Unsymmetrical Internal Alkynes Catalyzed by a Cobalt Pincer-NHC Complex. Org Lett 2024; 26:5862-5867. [PMID: 38935048 DOI: 10.1021/acs.orglett.4c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Highly regioselective hydroboration of unsymmetrical internal alkynes remains a significant challenge for synthesizing valuable alkenylboronate esters. Herein, we describe an easily synthesizable pincer NHC-based Co complex as a catalyst for the cis-α selective hydroboration of unactivated internal alkynes and the cis-β selective hydroboration of activated internal alkynes with pinacolborane. The reaction showcases high chemo-, regio-, and stereoselectivity, and the catalyst displays high efficiency and very low loading under base-free reaction conditions. The reaction scope was demonstrated by alkynes having a variety of functional groups. The mechanistic studies suggest a feasible Co-boryl intermediate to explain the unusual regioselectivity.
Collapse
Affiliation(s)
- Naresh Kumar Meher
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Maruti Suryavansi
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - K Geetharani
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Xu H, Hang Y, Lei X, Deng J, Yang J. Synthesis of cobalt phosphide hybrid for simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid. RSC Adv 2024; 14:14665-14671. [PMID: 38708113 PMCID: PMC11067435 DOI: 10.1039/d4ra01702a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Ascorbic acid (AA), dopamine (DA), and uric acid (UA) are important biomarkers for the clinical screening of diseases. However, the simultaneous determination of these three analytes is still challenging. Herein, we report a facile metal-organic framework (MOF)-derived method to synthesize a cobalt phosphide (Co2P) hybrid for the simultaneous electrochemical detection of AA, DA and UA. The introduction of highly dispersed Co2P nanoparticles onto a P, N-doped porous carbon matrix is responsible for providing abundant active sites and facilitating electron transfer, thereby contributing to the improved electrocatalytic performance of the hybrid. Well-resolved oxidation peaks and an enhanced current response for the simultaneous oxidation of AA, DA, and UA were achieved using a Co2P hybrid-modified screen-printed electrode (Co2P hybrid-SPE) with the differential pulse voltammetry (DPV) method. The detection limits for AA, DA, and UA in simultaneous detection were calculated as 17.80 μM, 0.018 μM, and 0.068 μM (S/N = 3), respectively. Furthermore, the feasibility of using Co2P hybrid-SPE for the simultaneous detection of AA, DA, and UA in real serum samples was also confirmed.
Collapse
Affiliation(s)
- Hongyan Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Yulu Hang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Xiaoyu Lei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Jinan Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University Chongqing 400044 China
| |
Collapse
|
5
|
Sakthivel M, Ho KC. X-CoOTe ( X = S, Se, and P) with Oxygen/Tellurium Dual Vacancies and Banana Stem Fiber-Derived Carbon Fiber as Battery-Type Cathode and Anode Materials for Asymmetric Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18754-18767. [PMID: 38563749 DOI: 10.1021/acsami.3c18205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we demonstrated the synthesis of anions (X = selenium (Se), sulfur (S), and phosphorus (P)) doped cobalt oxytelluride (X-CoOTe) with oxygen and tellurium dual vacancies using hydrothermal methods, followed by selenization, sulfurization, and phosphorization reactions. Especially, the Se-CoOTe-modified nickel foam (Se-CoOTe/NF) electrode delivered a higher specific capacity (752.95 C/g) and an extremely lower charge transfer resistance (0.87 Ω) than S-CoOTe/NF and P-CoOTe/NF due to the higher metallic conductivity of Se. Both oxygen and tellurium vacancies facilitate higher charge transfer conductivity, specific capacity, and stability. On the other hand, banana stem core fiber-derived activated carbon fiber (AC) with exfoliated carbon sheet, cracked surface, and corresponding high surface area boosts the excellent cycle stability up to 4000 cycles with capacitance retention of 100.29%. Thus, the asymmetric device (Se-CoOTe/NF//AC/NF) exhibited an extendable cell voltage (1.55 V), higher energy density (155.6 W h kg-1) at a power density (1356.2 W kg-1), and generous long-term stability (100% retention up to 10 000 cycles) in a liquid alkaline electrolyte. In the practicability test, the proposed asymmetric device mutually showed an increased operating voltage from 1.55 to 4.65 V for a three-series connection. In a three-series connection, a single white LED and an LED string glowed efficiently. This new finding will be very useful to develop tellurium-based chalcogenides and biowaste-derived carbon for energy storage applications.
Collapse
Affiliation(s)
- Mani Sakthivel
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
6
|
Xiao T, Yin X, Zhang T, Wei C, Chen S, Jiang L, Xiang P, Ni S, Tao F, Tan X. Activation-Assisted High-Concentration Phosphorus-Doping to Enhance the Electrochemical Performance of Cobalt Carbonate Hydroxide Hydrate. Inorg Chem 2023. [PMID: 37365016 DOI: 10.1021/acs.inorgchem.3c01159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
P-doping into metal oxides has been demonstrated as a valid avenue to ameliorate electrochemical performance because it can tune the electronic structures and increase the active sites for an electrochemical reaction. However, it usually results in a low P-doping concentration via the commonly used gas phosphorization method. In this work, an activation-assisted P-doping strategy was explored to significantly raise the P-doping concentration in cobalt carbonate hydroxide hydrate (CCHH). The activation treatment increased active sites for electrochemical reaction and endowed the sample with a high P content in the subsequent gas phosphorization process, thereby greatly enhancing the conductivity of the sample. Therefore, the final CCHH-A-P electrode exhibited a high capacitance of 6.62 F cm-2 at 5 mA cm-2 and good cyclic stability. In addition, the CCHH-A-P//CC ASC with CCHH-A-P as the positive electrode and carbon cloth as the negative electrode provided a high energy density of 0.25 mWh cm-2 at 4 mW cm-2 as well as excellent cycling performance with capacitance retention of 91.2% after 20,000 cycles. Our work shows an effective strategy to acquire Co-based materials with high-concentration P-doping that holds great potential in boosting the electrochemical performance of electrode materials via P-doping technology.
Collapse
Affiliation(s)
- Ting Xiao
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
- College of Materials and Chemical Engineering and Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Xingyu Yin
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Tanying Zhang
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Chong Wei
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Shengyu Chen
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Lihua Jiang
- College of Materials and Chemical Engineering and Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Peng Xiang
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Shibing Ni
- College of Materials and Chemical Engineering and Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Fujun Tao
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Xinyu Tan
- College of Electrical Engineering & New Energy and Hubei Provincial Engineering Technology Research Center for Microgrid, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| |
Collapse
|
7
|
Kader MA, Azmi NS, Kafi AKM, Hossain MS, Jose R, Goh KW. Ultrasensitive Nonenzymatic Real-Time Hydrogen Peroxide Monitoring Using Gold Nanoparticle-Decorated Titanium Dioxide Nanotube Electrodes. BIOSENSORS 2023; 13:671. [PMID: 37504070 PMCID: PMC10377226 DOI: 10.3390/bios13070671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 07/29/2023]
Abstract
An amperometric enzyme-free hydrogen peroxide (H2O2) sensor was developed by catalytically stabilizing active gold nanoparticles (Au NPs) of 4-5 nm on a porous titanium dioxide nanotube (TiO2 NTs) electrode. The Au NPs were homogeneously distributed on anatase TiO2 NTs with an outer diameter of ~102 nm, an inner diameter of ~60 nm, and a wall of thickness of ~40 nm. The cyclic voltammogram of the composite electrode showed a pair of redox peaks characterizing the electrocatalytic reduction of H2O2. The entrapping of Au NPs on TiO2 NTs prevented aggregation and facilitated good electrical conductivity and electron transfer rate, thus generating a wide linear range, a low detection limit of ~104 nM, and high sensitivity of ~519 µA/mM, as well as excellent selectivity, reproducibility, repeatability, and stability over 60 days. Furthermore, excellent recovery and relative standard deviation (RSD) were achieved in real samples, which were tap water, milk, and Lactobacillus plantarum bacteria, thereby verifying the accuracy and potentiality of the developed nonenzymatic sensor.
Collapse
Affiliation(s)
- Md Ashraful Kader
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Nina Suhaity Azmi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - A K M Kafi
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Md Sanower Hossain
- Centre for Sustainability of Ecosystem and Earth Resources (PUSAT ALAM), Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Rajan Jose
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
- Center for Advanced Intelligent Materials, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
8
|
Yang Y, Ren W, Liu Y, Cai C, Zheng X, Meng S, Zhang L. Construction of shell-core Co 2P/Cd 0.9Zn 0.1S photocatalyst by electrostatic attraction for enhancing H 2 evolution. J Colloid Interface Sci 2023; 649:547-558. [PMID: 37356156 DOI: 10.1016/j.jcis.2023.06.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
Solar energy-driven photocatalytic decomposition of water to produce H2 is of great significance for promoting the development of clean energy. To improve the efficiency of H2 production, a novel spherical Co2P/Cd0.9Zn0.1S (Co2P/CZS) composite with shell-core structure was successfully synthesized by electrostatic attraction. Under visible light irradiation, the optimal Co2P/CZS achieves an excellent H2 rate of 16.05 mmol h-1 g-1 in benzyl alcohol (PhCH2OH) solution, with a quantum efficiency of 34.3% at 450 nm. The Co2P thin layer coated on the CZS surface not only facilitates the photogenerated charge transfer from Co2P to CZS under visible light illumination, but reduces the energy barrier of PhCH2OH oxidation and H2 evolution. The present results show that shell-core Co2P/CZS composite may be one of promising catalyst to enhance the activity of H2 evolution, which provides an important reference basis for new catalyst design and wide prospects for further application of metal sulfides.
Collapse
Affiliation(s)
- Yang Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei Ren
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China
| | - Chun Cai
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xiuzhen Zheng
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Sugang Meng
- College of Chemistry and Material Science, Huaibei Normal University, Huaibei 235000, China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Plasma-Engineered cobalt nanoparticle encapsulated N-doped graphene nanoplatelets as High-performance Oxygen Reduction Reaction Electrocatalysts for Aluminum–air batteries. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
10
|
Wang ZY, Chang HW, Tsai YC. Synthesis of Bimetallic Ni-Co Phosphide Nanosheets for Electrochemical Non-Enzymatic H 2O 2 Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:66. [PMID: 36615975 PMCID: PMC9824346 DOI: 10.3390/nano13010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
NiCoP nanosheets (NSs) were successfully synthesized using the hydrothermal and high-temperature phosphorization process. The obtained NiCoP NSs were immobilized on a glassy carbon electrode (GCE) and used to construct a novel sensing platform for electrochemical non-enzymatic H2O2 sensing. Physicochemical characteristics of NiCoP NSs were obtained by field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In addition, the electrochemical properties of NiCoP NSs were obtained by cyclic voltammetry (CV) and chronoamperometry (CA) towards the non-enzymatic detection of H2O2. FESEM and FETEM images provided a morphological insight (the unique nanosheets morphology of NiCoP) that could expose more active sites to promote mass/charge transport at the electrode/electrolyte interface. XRD and XPS results also confirmed the crystalline nature of the NiCoP nanosheets and the coexistence of multiple transitional metal oxidation states in NiCoP nanosheets. These unique physicochemical characteristics had a degree of contribution to ensuring enhancement in the electrochemical behavior. As a result, the synthesized NiCoP NSs composed of intercalated nanosheets, as well as the synergistic interaction between bimetallic Ni/Co and P atoms exhibited excellent electrocatalytical activity towards H2O2 electroreduction at neutral medium. As the results showed, the electrochemical sensing based on NiCoP NSs displayed a linear range of 0.05~4 mM, a sensitivity of 225.7 μA mM-1 cm-2, a limit of detection (LOD) of 1.190 μM, and good selectivity. It was concluded that NiCoP NSs-based electrochemical sensing might open new opportunities for future construction of H2O2 sensing platforms.
Collapse
Affiliation(s)
- Zhi-Yuan Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Han-Wei Chang
- Department of Chemical Engineering, National United University, Miaoli 360302, Taiwan
- Pesticide Analysis Center, National United University, Miaoli 360302, Taiwan
| | - Yu-Chen Tsai
- Department of Chemical Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
11
|
Synthesis of AuxCo100 − x/MWCNT nanoparticles as an efficient anode electrocatalyst for borohydride oxidation in alkaline medium. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01824-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Molaei Yielzoleh F, Nikoofar K. Titanomagnetite functionalized by amino acid-based ionic liquid and cobalt (Fe3-xTixO4-SiO2@TrpBu3+I−-Co(II)): A reusable bio-nanocomposite for the synthesis of aryl thioamides. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Wang T, Wang C, Ni Y, Zhou Y, Geng B. Hexamethylenetetramine induced multidimensional defects in Co 2P nanosheets for efficient alkaline hydrogen evolution. Chem Commun (Camb) 2022; 58:6352-6355. [PMID: 35536555 DOI: 10.1039/d2cc01393b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Crystal engineering is an important way to improve the catalytic performance of transition-metal phosphides. In this work, we propose a strategy for constructing multi-dimensional defects induced by hexamethylenetetramine, which effectively introduces grain boundaries, N doping and P vacancies into Co2P nanosheets, and improves the activity and stability of the catalyst. Due to the synergistic effect of the multi-dimensional defects, the Co2P nanosheets exhibit excellent HER catalytic performance, especially at a large current density of 100 mA cm-2 with an overpotential of only 159 mV. Under 1 M KOH electrolyte and current density of 10 mA cm-2, the long-term test for 36 h shows that the catalyst maintains a very high stability.
Collapse
Affiliation(s)
- Tingjuan Wang
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu, 241002, China.
| | - Chao Wang
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu, 241002, China.
| | - Yaoyao Ni
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu, 241002, China.
| | - Yan Zhou
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu, 241002, China.
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, Anhui Normal University, Wuhu, 241002, China. .,Institute of Energy, Hefei Comprehensive National Science Center, Anhui, Hefei, 230031, China
| |
Collapse
|
14
|
Lv J, Fan M, Zhang L, Zhou Q, Wang L, Chang Z, Chong R. Photoelectrochemical sensing and mechanism investigation of hydrogen peroxide using a pristine hematite nanoarrays. Talanta 2022; 237:122894. [PMID: 34736710 DOI: 10.1016/j.talanta.2021.122894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 09/18/2021] [Indexed: 01/03/2023]
Abstract
In this paper, a facile hydrothermal combined with subsequent two-step post-calcination method was used to fabricate hematite (α-Fe2O3) nanoarrays on fluorine-doped SnO2 glass (FTO). The morphology, crystalline phase, optical property and surface chemical states of the fabricated α-Fe2O3 photoelectrode were characterized by scanning electron microscopy, X-ray diffraction, ultraviolet visible spectroscopy and X-ray photoelectron spectroscopy correspondingly. The α-Fe2O3 photoelectrode exhibits excellent photoelectrochemical (PEC) response toward hydrogen peroxide (H2O2) in aqueous solutions, with a low detection limit of 20 μM (S/N = 3) and wide linear range (0.01-0.09, 0.3-4, and 6-16 mM). Additionally, the α-Fe2O3 photoelectrode shows satisfying reproducibility, stability, selectivity and good feasibility for real samples. Mechanism analysis indicates, comparing with H2O, H2O2 possesses much more fast reaction kinetics over α-Fe2O3 surface, thus the recombination of photogenerated charges are reduced, followed by much more photogenerated electrons are migrated to the counter electrode via external circuit. The insight on the enhanced photocurrent, which is corelative to the concentration of H2O2 in aqueous solution, will stimulate us to further optimize the surface structure of α-Fe2O3 to gain highly efficient α-Fe2O3 based sensors.
Collapse
Affiliation(s)
- Jiaqi Lv
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ming Fan
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Ling Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Qian Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Li Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhixian Chang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Ruifeng Chong
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Provincial Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
15
|
Ji P, Wang X, Yin J, Yao Y, Du W. Amplification of Ferroptosis with Liposomal Nanoreactor Cooperates with Low-Toxic Doxorubicin Apoptosis for Enhanced Tumor Chemotherapy. Biomater Sci 2022; 10:1544-1553. [DOI: 10.1039/d2bm00079b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the remarkable tumor inhibition effect of doxorubicin (DOX), its cardiotoxicity severly limits the clinical dosage and further impairs the chemotherapy efficacy. To improve the biosafety and effectiveness of conventional...
Collapse
|