1
|
Peng W, Li L, Zhang Y, Su H, Jiang X, Liu H, Huang X, Zhou L, Shen XC, Liu C. Photothermal synergistic nitric oxide controlled release injectable self-healing adhesive hydrogel for biofilm eradication and wound healing. J Mater Chem B 2023; 12:158-175. [PMID: 38054356 DOI: 10.1039/d3tb02040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The development of injectable self-healing adhesive hydrogel dressings with excellent bactericidal activity and wound healing ability is urgently in demand for combating biofilm infections. Herein, a multifunctional hydrogel (QP/QT-MB) with near-infrared (NIR) light-activated mild photothermal/gaseous antimicrobial activity was developed based on the dynamic reversible borate bonds and hydrogen bonds crosslinking between quaternization chitosan (QCS) derivatives alternatively containing phenylboronic acid and catechol-like moieties in conjunction with the in situ encapsulation of BNN6-loaded mesoporous polydopamine (MPDA@BNN6 NPs). Given the dynamic reversible cross-linking feature, the versatile hybrid hydrogel exhibited injectability, flexibility, and rapid self-healing ability. The numerous phenylboronic acid and catechol-like moieties on the QCS backbone confer the hydrogel with specific bacterial affinity, desirable tissue adhesion, and antioxidant stress ability that enhance bactericidal activity and facilitate the regeneration of infection wounds. Under NIR irradiation, the QP/QT-MB hydrogels exhibited a desirable mild photothermal effect and NIR-activity controllable NO delivery, combined with the endogenous contact antimicrobial activity of hydrogel, contributing jointly to induce dispersal of biofilms and disruption of the bacterial plasma membranes, ultimately leading to bacteria inactivation and biofilm elimination. In vivo experiments demonstrated that the fabricated QP/QT-MB hydrogel platform was capable of inducing efficient eradication of the S. aureus biofilm in a severely infected wound model and accelerating infected wound repair by promoting collagen deposition, angiogenesis, and suppressing inflammatory responses. Additionally, the QP/QT-MB hydrogel demonstrated excellent biocompatibility in vitro and in vivo. Collectively, the hydrogel (QP/QT-MB) reveals great potential application prospects as a promising alternative in the field of biofilm-associated infection treatment.
Collapse
Affiliation(s)
- Weiling Peng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Lixia Li
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Yu Zhang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haibing Su
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohe Jiang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haimeng Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohua Huang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541001, China
| | - Chanjuan Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| |
Collapse
|
2
|
Zhuang P, Li K, Li D, Qiao H, E Y, Wang M, Sun J, Mei X, Li D. Correction: Assembly of Carbon Dots into Frameworks with Enhanced Stability and Antibacterial Activity. NANOSCALE RESEARCH LETTERS 2022; 17:125. [PMID: 36525142 PMCID: PMC9758259 DOI: 10.1186/s11671-022-03751-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- Pengfei Zhuang
- Jinzhou Medical University, Jinzhou, China
- Department of Basic Science, Jinzhou Medical University, Jinzhou, China
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, China
| | - Kuo Li
- Jinzhou Medical University, Jinzhou, China
| | - Daoyong Li
- Jinzhou Medical University, Jinzhou, China
| | - Haixia Qiao
- Department of Basic Science, Jinzhou Medical University, Jinzhou, China
| | - Yifeng E
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, China
| | - Mingqun Wang
- Department of Basic Medical Science, Jinzhou Medical University, Jinzhou, China
| | | | - Xifan Mei
- Jinzhou Medical University, Jinzhou, China.
| | - Dan Li
- Jinzhou Medical University, Jinzhou, China.
- Department of Basic Science, Jinzhou Medical University, Jinzhou, China.
- Department of Pharmacology, Jinzhou Medical University, Jinzhou, China.
| |
Collapse
|
3
|
Synthesis of Green fluorescent Nitrogen doped Vitis vinifera derived Carbon dots and their in-vitro antimicrobial studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|