1
|
Lewis SA, Ruttenberg A, Iyiyol T, Kong N, Jin SC, Kruer MC. Potential clinical applications of advanced genomic analysis in cerebral palsy. EBioMedicine 2024; 106:105229. [PMID: 38970919 PMCID: PMC11282942 DOI: 10.1016/j.ebiom.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Cerebral palsy (CP) has historically been attributed to acquired insults, but emerging research suggests that genetic variations are also important causes of CP. While microarray and whole-exome sequencing based studies have been the primary methods for establishing new CP-gene relationships and providing a genetic etiology for individual patients, the cause of their condition remains unknown for many patients with CP. Recent advancements in genomic technologies offer additional opportunities to uncover variations in human genomes, transcriptomes, and epigenomes that have previously escaped detection. In this review, we outline the use of these state-of-the-art technologies to address the molecular diagnostic challenges experienced by individuals with CP. We also explore the importance of identifying a molecular etiology whenever possible, given the potential for genomic medicine to provide opportunities to treat patients with CP in new and more precise ways.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States; Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Andrew Ruttenberg
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Tuğçe Iyiyol
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nahyun Kong
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States; Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States; Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
2
|
Wawrzczak-Bargieła A, Bilecki W, Maćkowiak M. Epigenetic Targets in Schizophrenia Development and Therapy. Brain Sci 2023; 13:brainsci13030426. [PMID: 36979236 PMCID: PMC10046502 DOI: 10.3390/brainsci13030426] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Schizophrenia is regarded as a neurodevelopmental disorder with its course progressing throughout life. However, the aetiology and development of schizophrenia are still under investigation. Several data suggest that the dysfunction of epigenetic mechanisms is known to be involved in the pathomechanism of this mental disorder. The present article revised the epigenetic background of schizophrenia based on the data available in online databases (PubMed, Scopus). This paper focused on the role of epigenetic regulation, such as DNA methylation, histone modifications, and interference of non-coding RNAs, in schizophrenia development. The article also reviewed the available data related to epigenetic regulation that may modify the severity of the disease as a possible target for schizophrenia pharmacotherapy. Moreover, the effects of antipsychotics on epigenetic malfunction in schizophrenia are discussed based on preclinical and clinical results. The obtainable data suggest alterations of epigenetic regulation in schizophrenia. Moreover, they also showed the important role of epigenetic modifications in antipsychotic action. There is a need for more data to establish the role of epigenetic mechanisms in schizophrenia therapy. It would be of special interest to find and develop new targets for schizophrenia therapy because patients with schizophrenia could show little or no response to current pharmacotherapy and have treatment-resistant schizophrenia.
Collapse
|
3
|
Huang W, Yuan Z, Gu H. Exploring epigenomic mechanisms of neural tube defects using multi-omics methods and data. Ann N Y Acad Sci 2022; 1515:50-60. [PMID: 35666948 DOI: 10.1111/nyas.14802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neural tube defects (NTDs) are a heterogeneous set of malformations attributed to disruption in normal neural tube closure during early embryogenesis. An in-depth understanding of NTD etiology and mechanisms remains elusive, however. Among the proposed mechanisms, epigenetic changes are thought to play an important role in the formation of NTDs. Epigenomics covers a wide spectrum of genomic DNA sequence modifications that can be investigated via high-throughput techniques. Recent advances in epigenomic technologies have enabled epigenetic studies of congenital malformations and facilitated the integration of big data into the understanding of NTDs. Herein, we review clinical epigenomic data that focuses on DNA methylation, histone modification, and miRNA alterations in human neural tissues, placental tissues, and leukocytes to explore potential mechanisms by which candidate genes affect human NTD pathogenesis. We discuss the links between epigenomics and gene regulatory mechanisms, and the effects of epigenetic alterations in human tissues on neural tube closure.
Collapse
Affiliation(s)
- Wanqi Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Selvanathan T, Smith JM, Miller SP, Field TS. Neurodevelopment and cognition across the lifespan in patients with single ventricle physiology: Abnormal brain maturation and accumulation of brain injuries. Can J Cardiol 2022; 38:977-987. [DOI: 10.1016/j.cjca.2022.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023] Open
|
5
|
Dagra A, Barpujari A, Bauer SZ, Olowofela BO, Mohamed S, McGrath K, Robinson C, Robicsek S, Snyder A, Lucke-Wold B. Epigenetics of Neurotrauma. NEUROLOGY (CHICAGO, ILL.) 2022; 2:42-47. [PMID: 36507115 PMCID: PMC9732507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Epigenetic changes have been linked to a host of disease states. Besides the physiological function of epigenetic changes in regulating cellular function, recent data indicates that key changes in epigenetic activity also play an important pathophysiologic role following neurotrauma specifically. Such manifestations occur through the activation or silencing of different genes. Histone methylation has emerged as a critical component of this process and can be selectively modulated after injury. Pre-clinical studies have resulted in key discoveries regarding specific methylation sites of interest. This focused review highlights some of these early findings and their relationship to clinical outcomes. These findings suggest areas of future investigation and discovery in the quest to develop ideal biomarkers and methods to utilize them in developing therapeutic interventions.
Collapse
Affiliation(s)
- A Dagra
- College of Medicine, University of Florida, USA
| | - A Barpujari
- College of Liberal Arts and Sciences, University of Florida, USA
| | - SZ Bauer
- College of Medicine, University of Nevada, USA
| | | | - S Mohamed
- College of Medicine, University of Florida, USA
| | - K McGrath
- College of Medicine, University of Florida, USA
| | - C Robinson
- Departments of Neurology and Neuroscience, McKnight Brain Institute, University of Florida, USA
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and Brain Injury Rehabilitation and Neuroresilience Center, University of Florida, USA
| | - S Robicsek
- Department of Anesthesiology, University of Florida, USA
| | - A Snyder
- Department of Neuropsychology, University of Florida, USA
| | - B Lucke-Wold
- Department of Neurosurgery, University of Florida, USA
| |
Collapse
|
6
|
Reichard J, Zimmer-Bensch G. The Epigenome in Neurodevelopmental Disorders. Front Neurosci 2021; 15:776809. [PMID: 34803599 PMCID: PMC8595945 DOI: 10.3389/fnins.2021.776809] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Neurodevelopmental diseases (NDDs), such as autism spectrum disorders, epilepsy, and schizophrenia, are characterized by diverse facets of neurological and psychiatric symptoms, differing in etiology, onset and severity. Such symptoms include mental delay, cognitive and language impairments, or restrictions to adaptive and social behavior. Nevertheless, all have in common that critical milestones of brain development are disrupted, leading to functional deficits of the central nervous system and clinical manifestation in child- or adulthood. To approach how the different development-associated neuropathologies can occur and which risk factors or critical processes are involved in provoking higher susceptibility for such diseases, a detailed understanding of the mechanisms underlying proper brain formation is required. NDDs rely on deficits in neuronal identity, proportion or function, whereby a defective development of the cerebral cortex, the seat of higher cognitive functions, is implicated in numerous disorders. Such deficits can be provoked by genetic and environmental factors during corticogenesis. Thereby, epigenetic mechanisms can act as an interface between external stimuli and the genome, since they are known to be responsive to external stimuli also in cortical neurons. In line with that, DNA methylation, histone modifications/variants, ATP-dependent chromatin remodeling, as well as regulatory non-coding RNAs regulate diverse aspects of neuronal development, and alterations in epigenomic marks have been associated with NDDs of varying phenotypes. Here, we provide an overview of essential steps of mammalian corticogenesis, and discuss the role of epigenetic mechanisms assumed to contribute to pathophysiological aspects of NDDs, when being disrupted.
Collapse
Affiliation(s)
- Julia Reichard
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Geraldine Zimmer-Bensch
- Functional Epigenetics in the Animal Model, Institute for Biology II, RWTH Aachen University, Aachen, Germany
- Research Training Group 2416 MultiSenses-MultiScales, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
7
|
Leo L, Colonna Romano N. Emerging Single-Cell Technological Approaches to Investigate Chromatin Dynamics and Centromere Regulation in Human Health and Disease. Int J Mol Sci 2021; 22:ijms22168809. [PMID: 34445507 PMCID: PMC8395756 DOI: 10.3390/ijms22168809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetic regulators play a crucial role in establishing and maintaining gene expression states. To date, the main efforts to study cellular heterogeneity have focused on elucidating the variable nature of the chromatin landscape. Specific chromatin organisation is fundamental for normal organogenesis and developmental homeostasis and can be affected by different environmental factors. The latter can lead to detrimental alterations in gene transcription, as well as pathological conditions such as cancer. Epigenetic marks regulate the transcriptional output of cells. Centromeres are chromosome structures that are epigenetically regulated and are crucial for accurate segregation. The advent of single-cell epigenetic profiling has provided finer analytical resolution, exposing the intrinsic peculiarities of different cells within an apparently homogenous population. In this review, we discuss recent advances in methodologies applied to epigenetics, such as CUT&RUN and CUT&TAG. Then, we compare standard and emerging single-cell techniques and their relevance for investigating human diseases. Finally, we describe emerging methodologies that investigate centromeric chromatin specification and neocentromere formation.
Collapse
|