1
|
Sah S, Bifarin OO, Moore SG, Gaul DA, Chung H, Kwon SY, Cho H, Cho CH, Kim JH, Kim J, Fernández FM. Serum Lipidome Profiling Reveals a Distinct Signature of Ovarian Cancer in Korean Women. Cancer Epidemiol Biomarkers Prev 2024; 33:681-693. [PMID: 38412029 PMCID: PMC11061607 DOI: 10.1158/1055-9965.epi-23-1293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/11/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Distinguishing ovarian cancer from other gynecological malignancies is crucial for patient survival yet hindered by non-specific symptoms and limited understanding of ovarian cancer pathogenesis. Accumulating evidence suggests a link between ovarian cancer and deregulated lipid metabolism. Most studies have small sample sizes, especially for early-stage cases, and lack racial/ethnic diversity, necessitating more inclusive research for improved ovarian cancer diagnosis and prevention. METHODS Here, we profiled the serum lipidome of 208 ovarian cancer, including 93 early-stage patients with ovarian cancer and 117 nonovarian cancer (other gynecological malignancies) patients of Korean descent. Serum samples were analyzed with a high-coverage liquid chromatography high-resolution mass spectrometry platform, and lipidome alterations were investigated via statistical and machine learning (ML) approaches. RESULTS We found that lipidome alterations unique to ovarian cancer were present in Korean women as early as when the cancer is localized, and those changes increase in magnitude as the diseases progresses. Analysis of relative lipid abundances revealed specific patterns for various lipid classes, with most classes showing decreased abundance in ovarian cancer in comparison with other gynecological diseases. ML methods selected a panel of 17 lipids that discriminated ovarian cancer from nonovarian cancer cases with an AUC value of 0.85 for an independent test set. CONCLUSIONS This study provides a systemic analysis of lipidome alterations in human ovarian cancer, specifically in Korean women. IMPACT Here, we show the potential of circulating lipids in distinguishing ovarian cancer from nonovarian cancer conditions.
Collapse
Affiliation(s)
- Samyukta Sah
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Olatomiwa O. Bifarin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
| | - Samuel G. Moore
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - David A. Gaul
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Hyewon Chung
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu Republic of Korea
| | - Sun Young Kwon
- Department of Pathology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Hanbyoul Cho
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chi-Heum Cho
- Department of Obstetrics and Gynecology, School of Medicine, Keimyung University, Daegu Republic of Korea
| | - Jae-Hoon Kim
- Department of Obstetrics and Gynecology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jaeyeon Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Facundo M. Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
2
|
Weaver C, Nam A, Settle C, Overton M, Giddens M, Richardson KP, Piver R, Mysona DP, Rungruang B, Ghamande S, McIndoe R, Purohit S. Serum Proteomic Signatures in Cervical Cancer: Current Status and Future Directions. Cancers (Basel) 2024; 16:1629. [PMID: 38730581 PMCID: PMC11083044 DOI: 10.3390/cancers16091629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
In 2020, the World Health Organization (WHO) reported 604,000 new diagnoses of cervical cancer (CC) worldwide, and over 300,000 CC-related fatalities. The vast majority of CC cases are caused by persistent human papillomavirus (HPV) infections. HPV-related CC incidence and mortality rates have declined worldwide because of increased HPV vaccination and CC screening with the Papanicolaou test (PAP test). Despite these significant improvements, developing countries face difficulty implementing these programs, while developed nations are challenged with identifying HPV-independent cases. Molecular and proteomic information obtained from blood or tumor samples have a strong potential to provide information on malignancy progression and response to therapy in CC. There is a large amount of published biomarker data related to CC available but the extensive validation required by the FDA approval for clinical use is lacking. The ability of researchers to use the big data obtained from clinical studies and to draw meaningful relationships from these data are two obstacles that must be overcome for implementation into clinical practice. We report on identified multimarker panels of serum proteomic studies in CC for the past 5 years, the potential for modern computational biology efforts, and the utilization of nationwide biobanks to bridge the gap between multivariate protein signature development and the prediction of clinically relevant CC patient outcomes.
Collapse
Affiliation(s)
- Chaston Weaver
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
| | - Alisha Nam
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Caitlin Settle
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Madelyn Overton
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Maya Giddens
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
| | - Katherine P. Richardson
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
| | - Rachael Piver
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - David P. Mysona
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Bunja Rungruang
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Sharad Ghamande
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| | - Sharad Purohit
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (C.W.); (K.P.R.); (R.P.); (D.P.M.); (R.M.)
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA 30912, USA; (A.N.); (C.S.); (M.O.); (M.G.)
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (B.R.); (S.G.)
| |
Collapse
|
3
|
Lee J, Park JE, Lee D, Seo N, An HJ. Advancements in protein glycosylation biomarkers for ovarian cancer through mass spectrometry-based approaches. Expert Rev Mol Diagn 2024; 24:249-258. [PMID: 38112537 DOI: 10.1080/14737159.2023.2297933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
INTRODUCTION Ovarian cancer, characterized by metastasis and reduced 5-year survival rates, stands as a substantial factor in the mortality of gynecological malignancies worldwide. The challenge of delayed diagnosis originates from vague early symptoms and the absence of efficient screening and diagnostic biomarkers for early cancer detection. Recent studies have explored the intricate interplay between ovarian cancer and protein glycosylation, unveiling the potential significance of glycosylation-oriented biomarkers. AREAS COVERED This review examines the progress in glycosylation biomarker research, with particular emphasis on advances driven by mass spectrometry-based technologies. We document milestones achieved, discuss encountered limitations, and also highlight potential areas for future research and development of protein glycosylation biomarkers for ovarian cancer. EXPERT OPINION The association of glycosylation in ovarian cancer is well known, but current research lacks desired sensitivity and specificity for early detection. Notably, investigations into protein-specific and site-specific glycoproteomics have the potential to significantly enhance our understanding of ovarian cancer and facilitate the identification of glycosylation-based biomarkers. Furthermore, the integration of advanced mass spectrometry techniques with AI-driven analysis and glycome databases holds the promise for revolutionizing biomarker discovery for ovarian cancer, ultimately transforming diagnosis and improving patient outcomes.
Collapse
Affiliation(s)
- Jua Lee
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Daum Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
- Asia Glycomics Reference Site, Daejeon, Republic of Korea
| |
Collapse
|
4
|
Hedlund Lindberg J, Widgren A, Ivansson E, Gustavsson I, Stålberg K, Gyllensten U, Sundfeldt K, Bergquist J, Enroth S. Toward ovarian cancer screening with protein biomarkers using dried, self-sampled cervico-vaginal fluid. iScience 2024; 27:109001. [PMID: 38352226 PMCID: PMC10863317 DOI: 10.1016/j.isci.2024.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Early detection is key for increased survival in ovarian cancer, but no general screening program exists today due to lack of biomarkers and overall cost versus benefit over traditional clinical methods. Here, we used dried cervico-vaginal fluid (CVF) as sampling matrix coupled with mass spectrometry for detection of protein biomarkers. We find that self-collected CVF on paper cards yields robust results and is suitable for high-throughput proteomics. Artificial intelligence-based methods were used to identify an 11-protein panel that separates cases from controls. In validation data, the panel achieved a sensitivity of 0.97 (95% CI 0.91-1.00) at a specificity of 0.67 (0.40-0.87). Analyses of samples collected prior to development of symptoms indicate that the panel is informative also of future risk of disease. Dried CVF is used in cervical cancer screening, and our results opens the possibility for a screening program also for ovarian cancer, based on self-collected CVF samples.
Collapse
Affiliation(s)
- Julia Hedlund Lindberg
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Anna Widgren
- Analytical Chemistry, Department of Chemistry-Biomedical Center, Uppsala University, SE-75237 Uppsala, Sweden
| | - Emma Ivansson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Inger Gustavsson
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Karin Stålberg
- Department of Women’s and Children’s Health, Uppsala University, SE-75185 Uppsala, Sweden
| | - Ulf Gyllensten
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
| | - Karin Sundfeldt
- Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy at Gothenburg University, SE-41685 Gothenburg, Sweden
| | - Jonas Bergquist
- Analytical Chemistry, Department of Chemistry-Biomedical Center, Uppsala University, SE-75237 Uppsala, Sweden
| | - Stefan Enroth
- Department of Immunology, Genetics, and Pathology, Biomedical Center, SciLifeLab Uppsala, Uppsala University, SE-75108 Uppsala, Sweden
- Swedish Collegium for Advanced Study, Thunbergsvägen 2, SE-752 38 Uppsala, Sweden
| |
Collapse
|
5
|
Meng X, Qiu Y, Wang H. Significance of Magnetic Resonance Imaging Combining with Detection of Serum HE4, TSGF, and CD105 Levels in Diagnosis and Treatment of Moderate to Advanced Cervical Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:2090654. [PMID: 39281827 PMCID: PMC11401723 DOI: 10.1155/2022/2090654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 09/18/2024]
Abstract
Objective To explore the significance of magnetic resonance imaging (MRI) combining with detection of serum HE4, TSGF, and CD105 levels in diagnosis and treatment of moderate to advanced cervical cancer. Methods By means of retrospective study, 50 patients diagnosed with moderate to advanced cervical cancer by cervix biopsy pathology examination in our hospital from October 2018 to October 2019 were selected as the study group, and another 50 healthy individuals who did not have cervical cancer after routine gynecological examination and conventional ultrasound examination in the same period were selected as the control group. At the time of enrollment and 3 months after treatment, all study subjects received MRI examination and serological examination, and their HE4 and TSGF levels were measured by the enzyme-linked immunosorbent assay (ELISA) and chromatography method, respectively, and additionally, the immunohistochemistry SP method was adopted for patients in the study group to measure the microvessel density (MVD) marked by CD105. The relationship between MRI staging and FIGO staging was assessed, the efficacy of combining MRI with detection of serum HE4, TSGF, and CD105 levels in diagnosing moderate to advanced cervical cancer was calculated by plotting the ROC curve, and the imaging changes and serological changes of tumor tissue before and after treatment were analyzed. Results There were 3 of 4 patients in stage IIa and 14 of 15 patients in stage IIIb presenting MRI findings compatible with clinical examinations; 26 patients in stage IIb and 5 patients in stage IVb presenting MRI findings totally compatible with clinical examination. Before treatment, MRI finding of cervical lesion was irregular soft tissue mass, T1WI appeared isointensity or hyperintensity, and obvious lesion enhancement could be seen by enhanced scan. T2WI appeared mixed signal intensity or hyperintensity, with necrotic tissue and fat suppression being hyperintensity. After treatment, lesions shrunk, originally abnormal signals in 5 patients disappeared, and T1WI and T2WI signals in 45 patients presented no difference compared to before treatment. After T1WI enhancement, mild enhancement could be seen in 41 cases and no enhancement in 4 cases. The CD105-MVD of the study group was (68.98 ± 5.23); before and after treatment, the differences in HE4 and TSGF levels between the study group and the control group were significant (P < 0.001). The sensitivity, specificity, and accuracy rate of diagnosis of MRI diagnosis were respectively 82.0% (41/50), 90.0% (45/50), and 86.0% (86/100), and for the diagnosis combining with serum HE4, TSGF, and CD105 levels, they were 96.0% (48/50), 96.0% (48/50), and 96.0% (96/100), respectively, and AUC (95% CI) = 0.960 (0.908-1.000). Conclusion MRI staging is objective and accurate and has higher sensitivity when combined with serum HE4, TSGF, and CD105 levels in diagnosing moderate to advanced cervical cancer. All MRI, HE4, and TSGF can reflect the treatment effect of patients and are of great importance to efficacy assessment.
Collapse
Affiliation(s)
- Xiangfu Meng
- Departments of Radiology Linyi Traditional Chinese Medicine Hospital, 211 Jie Fang Road, Linyi, Shandong 276003, China
| | - Yuanmei Qiu
- Department of Laboratory, South Hospital District of Jiayuguan First People's Hospital, Jiayuguan 735100, Gansu, China
| | - Hongling Wang
- Department of Clinical Laboratory, Shandong Normal University Hospital, Jinan 250014, Shandong, China
| |
Collapse
|
6
|
Luu GT, Sanchez LM. Toward improvement of screening through mass spectrometry-based proteomics: ovarian cancer as a case study. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116679. [PMID: 34744497 PMCID: PMC8570641 DOI: 10.1016/j.ijms.2021.116679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ovarian cancer is one of the leading causes of cancer related deaths affecting United States women. Early-stage detection of ovarian cancer has been linked to increased survival, however, current screening methods, such as biomarker testing, have proven to be ineffective in doing so. Therefore, further developments are necessary to be able to achieve positive patient prognosis. Ongoing efforts are being made in biomarker discovery towards clinical applications in screening for early-stage ovarian cancer. In this perspective, we discuss and provide examples for several workflows employing mass spectrometry-based proteomics towards protein biomarker discovery and characterization in the context of ovarian cancer; workflows include protein identification and characterization as well as intact protein profiling. We also discuss the opportunities to merge these workflows for a multiplexed approach for biomarkers. Lastly, we provide our insight as to future developments that may serve to enhance biomarker discovery workflows while also considering translational potential.
Collapse
Affiliation(s)
- Gordon T Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St. Santa Cruz, CA, 95064
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St. Santa Cruz, CA, 95064
| |
Collapse
|
7
|
Martínez-Rodríguez F, Limones-González JE, Mendoza-Almanza B, Esparza-Ibarra EL, Gallegos-Flores PI, Ayala-Luján JL, Godina-González S, Salinas E, Mendoza-Almanza G. Understanding Cervical Cancer through Proteomics. Cells 2021; 10:1854. [PMID: 34440623 PMCID: PMC8391734 DOI: 10.3390/cells10081854] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the leading public health issues worldwide, and the number of cancer patients increases every day. Particularly, cervical cancer (CC) is still the second leading cause of cancer death in women from developing countries. Thus, it is essential to deepen our knowledge about the molecular pathogenesis of CC and propose new therapeutic targets and new methods to diagnose this disease in its early stages. Differential expression analysis using high-throughput techniques applied to biological samples allows determining the physiological state of normal cells and the changes produced by cancer development. The cluster of differential molecular profiles in the genome, the transcriptome, or the proteome is analyzed in the disease, and it is called the molecular signature of cancer. Proteomic analysis of biological samples of patients with different grades of cervical intraepithelial neoplasia (CIN) and CC has served to elucidate the pathways involved in the development and progression of cancer and identify cervical proteins associated with CC. However, several cervical carcinogenesis mechanisms are still unclear. Detecting pathologies in their earliest stages can significantly improve a patient's survival rate, prognosis, and recurrence. The present review is an update on the proteomic study of CC.
Collapse
Affiliation(s)
- Fátima Martínez-Rodríguez
- Microbiology Department, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico;
| | | | - Brenda Mendoza-Almanza
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Edgar L. Esparza-Ibarra
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Perla I. Gallegos-Flores
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Jorge L. Ayala-Luján
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (J.L.A.-L.); (S.G.-G.)
| | - Susana Godina-González
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (J.L.A.-L.); (S.G.-G.)
| | - Eva Salinas
- Microbiology Department, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico;
| | - Gretel Mendoza-Almanza
- Master in Biomedical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico;
- National Council of Science and Technology, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
8
|
Mukherjee S, Sundfeldt K, Borrebaeck CAK, Jakobsson ME. Comprehending the Proteomic Landscape of Ovarian Cancer: A Road to the Discovery of Disease Biomarkers. Proteomes 2021; 9:25. [PMID: 34070600 PMCID: PMC8163166 DOI: 10.3390/proteomes9020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/28/2022] Open
Abstract
Despite recent technological advancements allowing the characterization of cancers at a molecular level along with biomarkers for cancer diagnosis, the management of ovarian cancers (OC) remains challenging. Proteins assume functions encoded by the genome and the complete set of proteins, termed the proteome, reflects the health state. Comprehending the circulatory proteomic profiles for OC subtypes, therefore, has the potential to reveal biomarkers with clinical utility concerning early diagnosis or to predict response to specific therapies. Furthermore, characterization of the proteomic landscape of tumor-derived tissue, cell lines, and PDX models has led to the molecular stratification of patient groups, with implications for personalized therapy and management of drug resistance. Here, we review single and multiple marker panels that have been identified through proteomic investigations of patient sera, effusions, and other biospecimens. We discuss their clinical utility and implementation into clinical practice.
Collapse
Affiliation(s)
- Shuvolina Mukherjee
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| | - Karin Sundfeldt
- Sahlgrenska Center for Cancer Research, Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden;
| | - Carl A. K. Borrebaeck
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| | - Magnus E. Jakobsson
- Department of Immunotechnology, Lund University, 22100 Lund, Sweden; (S.M.); (C.A.K.B.)
| |
Collapse
|
9
|
Ryu J, Thomas SN. Quantitative Mass Spectrometry-Based Proteomics for Biomarker Development in Ovarian Cancer. Molecules 2021; 26:molecules26092674. [PMID: 34063568 PMCID: PMC8125593 DOI: 10.3390/molecules26092674] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy among women. Approximately 70–80% of patients with advanced ovarian cancer experience relapse within five years and develop platinum-resistance. The short life expectancy of patients with platinum-resistant or platinum-refractory disease underscores the need to develop new and more effective treatment strategies. Early detection is a critical step in mitigating the risk of disease progression from early to an advanced stage disease, and protein biomarkers have an integral role in this process. The best biological diagnostic tool for ovarian cancer will likely be a combination of biomarkers. Targeted proteomics methods, including mass spectrometry-based approaches, have emerged as robust methods that can address the chasm between initial biomarker discovery and the successful verification and validation of these biomarkers enabling their clinical translation due to the robust sensitivity, specificity, and reproducibility of these versatile methods. In this review, we provide background information on the fundamental principles of biomarkers and the need for improved treatment strategies in ovarian cancer. We also provide insight into the ways in which mass spectrometry-based targeted proteomics approaches can provide greatly needed solutions to many of the challenges related to ovarian cancer biomarker development.
Collapse
|