1
|
Ravindran S, Ranganathan S, R K, J N, A S, Kannan SK, Prasad K D, Marri J, K R. The role of molecular biomarkers in the diagnosis, prognosis, and treatment stratification of oral squamous cell carcinoma: A comprehensive review. THE JOURNAL OF LIQUID BIOPSY 2025; 7:100285. [PMID: 40027232 PMCID: PMC11863969 DOI: 10.1016/j.jlb.2025.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 03/05/2025]
Abstract
One of the most common cancers targeting the area of the head and neck is oral squamous cell carcinoma (OSCC), carrying a heavy global health cost. With a high incidence of metastasis and recurrence, the outlook for OSCC remains dismal despite advancements in treatment. This has sparked an investigation into molecular biomarkers, which have the potential to improve early diagnosis, forecast patient outcomes, and direct therapeutic approaches. An extensive summary of the function of molecular biomarkers in OSCC diagnosis, prognosis, and medical care stratification is given in this article. Complex genetic mutations, epigenetic changes, and dysregulated signalling pathways are all part of the aetiology of OSCC. Tumor protein p53 (Tp53), Epidermal growth factor receptor (EGFR-targeted), Cyclin D1 (CCND1), and Human papilloma virus (HPV) status are examples of molecular biomarkers that have demonstrated potential in recognising disease at an early stage and identifying malignant changes. The non-invasive detection capabilities of diagnostic biomarkers such as salivary proteins, circulating tumour DNA (ctDNA), and microRNAs are being explored more and more because they may provide early intervention and better patient outcomes. Prognostically, tumour aggressiveness, recurrence risk, and overall survival have all been linked to biomarkers such as matrix metalloproteinases (MMPs), E-cadherin, and different cytokines. Furthermore, immune checkpoints such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed death-ligand 1 (PD-L1) are becoming recognised as important markers of the tumour microenvironment's function in the course of the disease and its reaction to immunotherapy. The significance of biomarkers in personalised medicine has been further highlighted by the recognition of subgroups with elevated risk that might gain benefit from more aggressive treatment options thanks to the genetic profiling of OSCC. Predictive biomarkers are essential for therapy classification because they allow therapeutic regimens to be tailored. For example, (Kirsten rat sarcoma viral oncogene homologous) KRAS mutations and EGFR expression influence the effectiveness of targeted therapies, and the existence of specific epigenetic markers influences choices about radiation or chemotherapy. It is expected that the incorporation of multi-omics techniques, which integrate transcriptome, proteome, and genomic data, will improve these tactics and increase accuracy in OSCC treatment. Molecular indicators have the potential to significantly improve the medical treatment of ovarian cancer. Better patient outcomes will eventually result from earlier identification, more precise prognostication, and individualised therapy regimens made possible by advancements in biomarker research. For these biomarkers to be widely used, further research must be done on verifying them and incorporating them into standard clinical practice.
Collapse
Affiliation(s)
- Saravanan Ravindran
- Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Chennai, 73, India
| | - Srinivasan Ranganathan
- Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Chennai, 73, India
| | - Karthikeyan R
- School of Pharmacy, Sri Balaji Vidyapeeth, SBV Campus, Pillayarkuppam, Puducherry, India
| | - Nandini J
- Saveetha college of pharmacy, Saveetha institute of medical and technical sciences, Chennai, 602105, India
| | - Shanmugarathinam A
- Department of Pharmaceutical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620024, India
| | - Senthil Kumar Kannan
- Department of Pharmaceutics Karpagam college of pharmacy, Othakkalmandapam, Coimbatore, 32, India
| | - Durga Prasad K
- K.V.S.R. Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, 520008, India
| | - Jalaiah Marri
- QIS College of Pharmacy, Vengamukkapalem, Ongole, Andhra Pradesh, 523272, India
| | - Rajaganapathi K
- Faculty of Pharmacy, Bharath Institute of Higher Education and Research, Chennai, 73, India
| |
Collapse
|
2
|
Saba Y, Yacoub S, Netanely Y, Jaber Y, Naamneh R, Zubeidat K, Meyer A, Shlomovitz YE, Eli-Berchoer L, Wilensky A, Prinz I, Hovav A. γδ17T Cells Aggravate Carcinogen-Induced Oral Squamous Cell Carcinoma. J Dent Res 2025:220345241305564. [PMID: 39953670 DOI: 10.1177/00220345241305564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a highly aggressive malignancy, with a low 5-y survival rate and frequent local recurrence or metastasis. This study explores the role of γδT cells in the development and progression of OSCC. γδT cells, which exhibit innate and adaptive immune characteristics, are known for their dual role in cancer, acting as anti- and protumor agents depending on the context. Using a murine model of OSCC induced by the carcinogen 4-nitroquinoline-1-oxide (4NQO), which adequately mimics the progression of human OSCC, we investigated the impact of γδT cells on tumor growth and the tumor microenvironment. We first characterized the γδT cells of the tongue epithelium, the primary site for cancer development in this model. The results indicate that γδT cells are predominantly of the Vγ6+ subset, expanding postnatally in a microbiota-dependent manner. Upon 4NQO administration, depletion of γδT cells did not significantly alter the kinetics of OSCC progression but did result in a reduction in tumor size and number, suggesting a role in promoting tumor growth. Interestingly, the absence of IL-17, a key cytokine produced by the Vγ6+ subset, also resulted in reduced tumor volume without affecting disease progression, corroborating the protumor role of these cells in OSCC. Further analysis revealed that IL-17-producing γδT cells facilitate angiogenesis within the tumor microenvironment by promoting the expression of angiogenic factors. Of note, while 4NQO treatment increased the oral microbial load and altered its composition, IL-17 deficiency did not affect the oral microbiota, indicating that the effects of IL-17-producing γδT cells on OSCC are independent of microbial changes. This study highlights the pathologic role of IL-17-producing γδT cells in OSCC, particularly in promoting tumor growth through angiogenesis. This underscores the importance of γδT cells in OSCC and the need for further research into therapeutic strategies targeting these cells.
Collapse
Affiliation(s)
- Y Saba
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - S Yacoub
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Y Netanely
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - Y Jaber
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - R Naamneh
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - K Zubeidat
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - A Meyer
- Institute for Systems Immunology, Center for Molecular Neurobiology Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Y E Shlomovitz
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - L Eli-Berchoer
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| | - A Wilensky
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - I Prinz
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
- Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - A Hovav
- Faculty of Dental Medicine, Institute of Biomedical and Oral Research, Hebrew University, Jerusalem, Israel
| |
Collapse
|
3
|
Sun Y, Cheng G, Wei D, Luo J, Liu J. Integrating omics data and machine learning techniques for precision detection of oral squamous cell carcinoma: evaluating single biomarkers. Front Immunol 2024; 15:1493377. [PMID: 39691710 PMCID: PMC11649677 DOI: 10.3389/fimmu.2024.1493377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Early detection of oral squamous cell carcinoma (OSCC) is critical for improving clinical outcomes. Precision diagnostics integrating metabolomics and machine learning offer promising non-invasive solutions for identifying tumor-derived biomarkers. Methods We analyzed a multicenter public dataset comprising 61 OSCC patients and 61 healthy controls. Plasma metabolomics data were processed to extract 29 numerical and 47 ratio features. The Extra Trees (ET) algorithm was applied for feature selection, and the TabPFN model was used for classification and prediction. Results The model achieved an area under the curve (AUC) of 93% and an overall accuracy of 76.6% when using top-ranked individual biomarkers. Key metabolic features significantly differentiated OSCC patients from healthy controls, providing a detailed metabolic fingerprint of the disease. Discussion Our findings demonstrate the utility of integrating omics data with advanced machine learning techniques to develop accurate, non-invasive diagnostic tools for OSCC. The study highlights actionable metabolic signatures that have potential applications in personalized therapeutics and early intervention strategies.
Collapse
Affiliation(s)
- Yilan Sun
- Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guozhen Cheng
- College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Wei
- Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiacheng Luo
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiannan Liu
- Department of Oral and Maxillofacial Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
4
|
Zhang X, Feng Y, Gao F, Li T, Guo Y, Ge S, Wang N. Expression and clinical significance of U2AF homology motif kinase 1 in oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:626-634. [PMID: 39129074 DOI: 10.1016/j.oooo.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/03/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024]
Abstract
OBJECTIVE U2AF homology motif kinase 1 (UHMK1) is a newly discovered molecule that may have multiple functions. Recent studies have revealed that UHMK1 had aberrant expression in many tumors and was associated with tumor progression. However, UHMK1 was rarely reported in oral squamous cell carcinoma (OSCC). STUDY DESIGN In this study, Western blot, quantitative real-time polymerase chain reaction (PCR), and immunohistochemistry were used to detect the expression of UHMK1 in OSCC and peritumoral non-neoplastic tissues. Then, its relationship with clinicopathologic parameters was analyzed. The Kaplan-Meier method and Cox regression model were used to analyze the effects of UHMK1 expression on the prognosis and survival of OSCC patients. RESULTS Our results showed that UHMK1 had higher expression in OSCC tissues compared with in peritumoral non-neoplastic tissues, and its high expression was associated with high TNM stage and lymph node metastasis. High UHMK1 expression was related to short overall and disease-free survival times. Moreover, UHMK1 expression was identified as an independent prognostic factor that influences overall and disease-free survival of OSCC patients. CONCLUSIONS High expression of UHMK1 is associated with the poor prognosis of patients, and it can be used as a potential prognostic molecule for OSCC.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yuanyong Feng
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Gao
- Deparment of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tongtong Li
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Yan Guo
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China
| | - Shengyou Ge
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ning Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
5
|
Ma Z, Chen J, Xin L, Ghodsi A. GraphPI: Efficient Protein Inference with Graph Neural Networks. J Proteome Res 2024; 23:4821-4834. [PMID: 39396189 DOI: 10.1021/acs.jproteome.3c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The integration of deep learning approaches in biomedical research has been transformative, enabling breakthroughs in various applications. Despite these strides, its application in protein inference is impeded by the scarcity of extensively labeled data sets, a challenge compounded by the high costs and complexities of accurate protein annotation. In this study, we introduce GraphPI, a novel framework that treats protein inference as a node classification problem. We treat proteins as interconnected nodes within a protein-peptide-PSM graph, utilizing a graph neural network-based architecture to elucidate their interrelations. To address label scarcity, we train the model on a set of unlabeled public protein data sets with pseudolabels derived from an existing protein inference algorithm, enhanced by self-training to iteratively refine labels based on confidence scores. Contrary to prevalent methodologies necessitating data set-specific training, our research illustrates that GraphPI, due to the well-normalized nature of Percolator features, exhibits universal applicability without data set-specific fine-tuning, a feature that not only mitigates the risk of overfitting but also enhances computational efficiency. Our empirical experiments reveal notable performance on various test data sets and deliver significantly reduced computation times compared to common protein inference algorithms.
Collapse
Affiliation(s)
- Zheng Ma
- Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jiazhen Chen
- Department of Statistical and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Lei Xin
- Bioinformatics Solutions Inc, Waterloo, Ontario N2L 3K8, Canada
| | - Ali Ghodsi
- Department of Statistical and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
6
|
Radaic A, Kamarajan P, Cho A, Wang S, Hung G, Najarzadegan F, Wong DT, Ton‐That H, Wang C, Kapila YL. Biological biomarkers of oral cancer. Periodontol 2000 2024; 96:250-280. [PMID: 38073011 PMCID: PMC11163022 DOI: 10.1111/prd.12542] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 06/12/2024]
Abstract
The oral squamous cell carcinoma (OSCC) 5 year survival rate of 41% has marginally improved in the last few years, with less than a 1% improvement per year from 2005 to 2017, with higher survival rates when detected at early stages. Based on histopathological grading of oral dysplasia, it is estimated that severe dysplasia has a malignant transformation rate of 7%-50%. Despite these numbers, oral dysplasia grading does not reliably predict its clinical behavior. Thus, more accurate markers predicting oral dysplasia progression to cancer would enable better targeting of these lesions for closer follow-up, especially in the early stages of the disease. In this context, molecular biomarkers derived from genetics, proteins, and metabolites play key roles in clinical oncology. These molecular signatures can help predict the likelihood of OSCC development and/or progression and have the potential to detect the disease at an early stage and, support treatment decision-making and predict treatment responsiveness. Also, identifying reliable biomarkers for OSCC detection that can be obtained non-invasively would enhance management of OSCC. This review will discuss biomarkers for OSCC that have emerged from different biological areas, including genomics, transcriptomics, proteomics, metabolomics, immunomics, and microbiomics.
Collapse
Affiliation(s)
- Allan Radaic
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Pachiyappan Kamarajan
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Alex Cho
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Sandy Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Guo‐Chin Hung
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | | | - David T. Wong
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Hung Ton‐That
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Cun‐Yu Wang
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| | - Yvonne L. Kapila
- School of DentistryUniversity of California, Los Angeles (UCLA)Los AngelesCaliforniaUSA
| |
Collapse
|
7
|
Pomella S, Melaiu O, Cifaldi L, Bei R, Gargari M, Campanella V, Barillari G. Biomarkers Identification in the Microenvironment of Oral Squamous Cell Carcinoma: A Systematic Review of Proteomic Studies. Int J Mol Sci 2024; 25:8929. [PMID: 39201614 PMCID: PMC11354375 DOI: 10.3390/ijms25168929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
An important determinant for oral squamous cell carcinoma (OSCC) onset and outcome is the composition of the tumor microenvironment (TME). Thus, the study of the interactions occurring among cancer cells, immune cells, and cancer-associated fibroblasts within the TME could facilitate the understanding of the mechanisms underlying OSCC development and progression, as well as of its sensitivity or resistance to the therapy. In this context, it must be highlighted that the characterization of TME proteins is enabled by proteomic methodologies, particularly mass spectrometry (MS). Aiming to identify TME protein markers employable for diagnosing and prognosticating OSCC, we have retrieved a total of 119 articles spanning 2001 to 2023, of which 17 have passed the selection process, satisfying all its criteria. We have found a total of 570 proteins detected by MS-based proteomics in the TME of OSCC; among them, 542 are identified by a single study, while 28 are cited by two or more studies. These 28 proteins participate in extracellular matrix remodeling and/or energy metabolism. Here, we propose them as markers that could be used to characterize the TME of OSCC for diagnostic/prognostic purposes. Noteworthy, most of the 28 individuated proteins share one feature: being modulated by the hypoxia that is present in the proliferating OSCC mass.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier, 00133 Rome, Italy; (S.P.); (O.M.); (L.C.); (R.B.); (M.G.); (V.C.)
| |
Collapse
|
8
|
Almeida-Marques C, Rolfs F, Piersma SR, Bijnsdorp IV, Pham TV, Knol JC, Jimenez CR. Secretome processing for proteomics: A methods comparison. Proteomics 2024; 24:e2300262. [PMID: 38221716 DOI: 10.1002/pmic.202300262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 01/16/2024]
Abstract
The cancer cell secretome comprises a treasure-trove for biomarkers since it reflects cross-talk between tumor cells and their surrounding environment with high detectability in biofluids. In this study, we evaluated six secretome sample processing workflows coupled to single-shot mass spectrometry: (1) Protein concentration by ultrafiltration with a molecular weight cut-off (MWCO) filter and sample preparation through in-gel digestion (IGD); (2) Acetone protein precipitation coupled to IGD; (3) MWCO filter-based protein concentration followed by to in-solution digestion (ISD); (4) Acetone protein precipitation coupled to ISD; (5) Direct ISD; (6) Secretome lyophilization and ISD. To this end, we assessed workflow triplicates in terms of total number of protein identifications, unique identifications, reproducibility of protein identification and quantification and detectability of small proteins with important functions in cancer biology such as cytokines, chemokines, and growth factors. Our findings revealed that acetone protein precipitation coupled to ISD outperformed the other methods in terms of the number of identified proteins (2246) and method reproducibility (correlation coefficient between replicates (r = 0.94, CV = 19%). Overall, especially small proteins such as those from the classes mentioned above were better identified using ISD workflows. Concluding, herein we report that secretome protein precipitation coupled to ISD is the method of choice for high-throughput secretome proteomics via single shot nanoLC-MS/MS.
Collapse
Affiliation(s)
- Catarina Almeida-Marques
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Frank Rolfs
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Sander R Piersma
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Irene V Bijnsdorp
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
- Department Urology, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Thang V Pham
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Jaco C Knol
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| | - Connie R Jimenez
- Department Laboratory Medical Oncology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Cancer Center Amsterdam, OncoProteomics Laboratory, Amsterdam, Netherlands
| |
Collapse
|
9
|
Jayaseelan VP, Loganathan K, Pandi A, Ramasubramanian A, Kannan B, Arumugam P. Proteolysis-targeting chimeras targeting epigenetic modulators: a promising strategy for oral cancer therapy. Epigenomics 2023; 15:1233-1236. [PMID: 37990892 DOI: 10.2217/epi-2023-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Affiliation(s)
- Vijayashree Priyadharsini Jayaseelan
- Clinical Genetics lab, Centre for Cellular & Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences [SIMATS], Saveetha University, Poonamallee High Road, Chennai, Tamil Nadu - 600077, India
| | - Kavitha Loganathan
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, East Coast Road, Uthandi, Chennai - 600 119. Affiliated to The Tamil Nadu Dr. MGR Medical University, Anna Salai, Guindy, Chennai - 600032, India
| | - Anitha Pandi
- Clinical Genetics lab, Centre for Cellular & Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences [SIMATS], Saveetha University, Poonamallee High Road, Chennai, Tamil Nadu - 600077, India
| | - Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences [SIMATS], Saveetha University, Poonamallee High Road, Chennai, Tamil Nadu - 600077, India
| | - Balachander Kannan
- Centre for Cellular & Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences [SIMATS], Saveetha University, Poonamallee High Road, Chennai, Tamil Nadu - 600077, India
| | - Paramasivam Arumugam
- Centre for Cellular & Molecular Research, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences [SIMATS], Saveetha University, Poonamallee High Road, Chennai, Tamil Nadu - 600077, India
| |
Collapse
|
10
|
Zhang M, Li Q, Zhang W, Yang Y, Gu J, Dong Q. Identification and validation of genes associated with copper death in oral squamous cell carcinoma based on machine learning and weighted gene co-expression network analysis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101561. [PMID: 37451513 DOI: 10.1016/j.jormas.2023.101561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To identify copper-induced death-associated hub genes in oral squamous cell carcinoma (OSCC) and understand their functional and biological significance using machine learning and Weighted Gene Co-expression Network Analysis (WGCNA). METHODS OSCC transcriptomic data from GEO and TCGA databases were subjected to data integration, batch effect removal, background correction, and quantile normalization to select cuproptosis-associated genes using Spearman's correlation analysis. The 'limma' R package was used to filter differentially expressed genes (DEGs). Core module genes selected using gene co-expression network analysis with R package 'WGCNA' were screened using Support Vector Machine (SVM), LASSO regression, and Random Forest (RF) machine learning algorithms and validated using TCGA database samples. Core gene expression variations between OSCC and adjacent normal tissues were validated using immunohistochemistry. Immune infiltration analysis using package 'CIBERSORT' correlated hub genes with immune cells. RESULTS From 19 cuproptosis-related genes (identified from literature), 2382 cuproptosis-related mRNA were obtained through Spearman's correlation analysis; 112 DEGs using 'limma' R package and 32 hub genes using WGCNA were obtained. Hub genes TMPRSS11B, SERPINH1, and CDH3 were identified using machine learning algorithms. TCGA validation showed that TMPRSS11B significantly underexpressed (P < 0.001) but SERPINH1 and CDH3 significantly overexpressed (P < 0.001) in tumor samples. The AUC for TMPRSS11B, SERPINH1, and CDH3 in ROC curve analysis were 78.1%, 95.6%, and 87.5%, respectively. CONCLUSION TMPRSS11B, SERPINH1, and CDH3 may be pivotal for OSCC development and progression and potential targets for new therapeutic and predictive strategies. However, their specific functions and mechanisms underlying OSCC remain to be elucidated.
Collapse
Affiliation(s)
- Mingrui Zhang
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Qingxia Li
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Wu Zhang
- Graduate School, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yuanbo Yang
- Department of Stomatology, Tangshan Workers Hospital, Tangshan, Hebei, China
| | - Jianqi Gu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Qing Dong
- School of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
11
|
Zohud O, Lone IM, Nashef A, Iraqi FA. Towards system genetics analysis of head and neck squamous cell carcinoma using the mouse model, cellular platform, and clinical human data. Animal Model Exp Med 2023; 6:537-558. [PMID: 38129938 PMCID: PMC10757216 DOI: 10.1002/ame2.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is a leading global malignancy. Every year, More than 830 000 people are diagnosed with HNSCC globally, with more than 430 000 fatalities. HNSCC is a deadly diverse malignancy with many tumor locations and biological characteristics. It originates from the squamous epithelium of the oral cavity, oropharynx, nasopharynx, larynx, and hypopharynx. The most frequently impacted regions are the tongue and larynx. Previous investigations have demonstrated the critical role of host genetic susceptibility in the progression of HNSCC. Despite the advances in our knowledge, the improved survival rate of HNSCC patients over the last 40 years has been limited. Failure to identify the molecular origins of development of HNSCC and the genetic basis of the disease and its biological heterogeneity impedes the development of new therapeutic methods. These results indicate a need to identify more genetic factors underlying this complex disease, which can be better used in early detection and prevention strategies. The lack of reliable animal models to investigate the underlying molecular processes is one of the most significant barriers to understanding HNSCC tumors. In this report, we explore and discuss potential research prospects utilizing the Collaborative Cross mouse model and crossing it to mice carrying single or double knockout genes (e.g. Smad4 and P53 genes) to identify genetic factors affecting the development of this complex disease using genome-wide association studies, epigenetics, microRNA, long noncoding RNA, lncRNA, histone modifications, methylation, phosphorylation, and proteomics.
Collapse
Affiliation(s)
- Osayd Zohud
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Iqbal M. Lone
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| | - Aysar Nashef
- Department of Oral and Maxillofacial SurgeryBaruch Padeh Medical CenterPoriyaIsrael
- Azrieli Faculty of MedicineBar‐Ilan UniversityRamat GanIsrael
| | - Fuad A. Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel‐Aviv UniversityTel AvivIsrael
| |
Collapse
|
12
|
Xie JR, Chen XJ, Zhou G. Nuciferine Inhibits Oral Squamous Cell Carcinoma Partially through Suppressing the STAT3 Signaling Pathway. Int J Mol Sci 2023; 24:14532. [PMID: 37833979 PMCID: PMC10572883 DOI: 10.3390/ijms241914532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) poses a significant obstacle to the worldwide healthcare system. Discovering efficient and non-toxic medications is crucial for managing OSCC. Nuciferine, an alkaloid with an aromatic ring, is present in the leaves of Nelumbo nucifera. It has been proven to play a role in multiple biological processes, including the inhibition of inflammation, regulation of the immune system, formation of osteoclasts, and suppression of tumors. Despite the demonstrated inhibitory effects of nuciferine on different types of cancer, there is still a need for further investigation into the therapeutic effects and potential mechanisms of nuciferine in OSCC. Through a series of in vitro experiments, it was confirmed that nuciferine hindered the growth, movement, and infiltration, while enhancing the programmed cell death of OSCC cells. Furthermore, the administration of nuciferine significantly suppressed the signal transducer and activator of transcription 3 (STAT3) signaling pathway in comparison to other signaling pathways. Moreover, the activation of the STAT3 signaling pathway by colivelin resulted in the reversal of nuciferine-suppressed OSCC behaviors. In vivo, we also showed the anti-OSCC impact of nuciferine using the cell-based xenograft (CDX) model in nude mice. Nonetheless, colivelin diminished the tumor-inhibiting impact of nuciferine, suggesting that nuciferine might partially impede the advancement of OSCC by suppressing the STAT3 signaling pathway. Overall, this research could offer a fresh alternative for the pharmaceutical management of OSCC.
Collapse
Affiliation(s)
- Ji-Rong Xie
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.-R.X.); (X.-J.C.)
| | - Xiao-Jie Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.-R.X.); (X.-J.C.)
- Department of Oral Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Gang Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China; (J.-R.X.); (X.-J.C.)
- Department of Oral Medicine, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| |
Collapse
|
13
|
Abdulla R, Devasia Puthenpurackal J, Pinto SM, Rekha PD, Subbannayya Y. Serum autoantibody profiling of oral squamous cell carcinoma patients reveals NUBP2 as a potential diagnostic marker. Front Oncol 2023; 13:1167691. [PMID: 37810966 PMCID: PMC10556692 DOI: 10.3389/fonc.2023.1167691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Oral Squamous Cell Carcinoma (OSCC), a common malignancy of the head and neck region, is frequently diagnosed at advanced stages, necessitating the development of efficient diagnostic methods. Profiling autoantibodies generated against tumor-associated antigens have lately demonstrated a promising role in diagnosis, predicting disease course, and response to therapeutics and relapse. Methods In the current study, we, for the first time, aimed to identify and evaluate the diagnostic value of autoantibodies in serum samples of patients with OSCC using autoantibody profiling by an immunome protein array. The utility of anti-NUBP2 antibody and tissue positivity in OSCC was further evaluated. Results and discussion We identified a total of 53 autoantibodies with significant differential levels between OSCC and control groups, including 25 that were increased in OSCC and 28 that were decreased. These included autoantibodies against Thymidine kinase 1 (TK1), nucleotide-binding protein 2 (NUBP2), and protein pyrroline-5-carboxylate reductase 1 (PYCR1), among others. Immunohistochemical validation indicated positive staining of NUBP2 in a large majority of cases (72%). Further, analysis of OSCC data available in TCGA revealed higher NUBP2 expression correlated with better disease-free patient survival. In conclusion, the differential serum autoantibodies identified in the current study, including those for NUBP2, could be used as potential biomarkers for early diagnosis or as screening biomarkers for OSCC pending investigation in a larger cohort.
Collapse
Affiliation(s)
- Riaz Abdulla
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - Jofy Devasia Puthenpurackal
- Department of Oral Pathology and Microbiology, Yenepoya Dental College, Yenepoya (Deemed to be University), Mangalore, India
| | - Sneha M. Pinto
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Yashwanth Subbannayya
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
14
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Sun Y, Khan MAAK, Mangiola S, Barrow AD. IL17RB and IL17REL Expression Are Associated with Improved Prognosis in HPV-Infected Head and Neck Squamous Cell Carcinomas. Pathogens 2023; 12:pathogens12040572. [PMID: 37111458 PMCID: PMC10143491 DOI: 10.3390/pathogens12040572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
Changes in the cellular secretome are implicated in virus infection, malignancy, and anti-tumor immunity. We analyzed the association between transcriptional signatures (TS) from 24 different immune and stromal cell types on the prognosis of HPV-infected and HPV-free head and neck squamous carcinoma (HNSCC) patients from The Cancer Genome Atlas (TCGA) cohort. We found that HPV-positive HNSCC patients have tumors with elevated immune cell TS and improved prognosis, which was specifically associated with an increased tumor abundance of memory B and activated natural killer (NK) cell TS, compared to HPV-free HNSCC patients. HPV-infected patients upregulated many transcripts encoding secreted factors, such as growth factors, hormones, chemokines and cytokines, and their cognate receptors. Analysis of secretome transcripts and cognate receptors revealed that tumor expression of IL17RB and IL17REL are associated with a higher viral load and memory B and activated NK cell TS, as well as improved prognosis in HPV-infected HNSCC patients. The transcriptional parameters that we describe may be optimized to improve prognosis and risk stratification in the clinic and provide insights into gene and cellular targets that may potentially enhance anti-tumor immunity mediated by NK cells and memory B cells in HPV-infected HNSCC patients.
Collapse
Affiliation(s)
- Yuhan Sun
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Stefano Mangiola
- Division of Bioinformatics, Walter and Eliza Hall Institute, Parkville 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne 3010, Australia
| | - Alexander David Barrow
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| |
Collapse
|
16
|
Luo R, Li F, Wang Y, Zou H, Shang J, Fan Y, Liu H, Xu Z, Li R, Liu H. MXene-modified 3D printed scaffold for photothermal therapy and facilitation of oral mucosal wound reconstruction. MATERIALS & DESIGN 2023; 227:111731. [DOI: 10.1016/j.matdes.2023.111731] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
|
17
|
Liu M, Guo J, Jia R. Emerging roles of alternative RNA splicing in oral squamous cell carcinoma. Front Oncol 2022; 12:1019750. [PMID: 36505770 PMCID: PMC9732560 DOI: 10.3389/fonc.2022.1019750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 11/14/2022] [Indexed: 11/26/2022] Open
Abstract
Alternative RNA splicing (ARS) is an essential and tightly regulated cellular process of post-transcriptional regulation of pre-mRNA. It produces multiple isoforms and may encode proteins with different or even opposite functions. The dysregulated ARS of pre-mRNA contributes to the development of many cancer types, including oral squamous cell carcinoma (OSCC), and may serve as a biomarker for the diagnosis and prognosis of OSCC and an attractive therapeutic target. ARS is mainly regulated by splicing factors, whose expression is also often dysregulated in OSCC and involved in tumorigenesis. This review focuses on the expression and roles of splicing factors in OSCC, the alternative RNA splicing events associated with OSCC, and recent advances in therapeutic approaches that target ARS.
Collapse
Affiliation(s)
- Miaomiao Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China,*Correspondence: Jihua Guo, ; Rong Jia,
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China,RNA Institute, Wuhan University, Wuhan, China,*Correspondence: Jihua Guo, ; Rong Jia,
| |
Collapse
|