1
|
Fanalli SL, Gomes JD, de Novais FJ, Gervásio IC, Fukumasu H, Moreira GCM, Coutinho LL, Koltes J, Amaral AJ, Cesar ASM. Key co-expressed genes correlated with blood serum parameters of pigs fed with different fatty acid profile diets. Front Genet 2024; 15:1394971. [PMID: 39021677 PMCID: PMC11252010 DOI: 10.3389/fgene.2024.1394971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
This study investigated how gene expression is affected by dietary fatty acids (FA) by using pigs as a reliable model for studying human diseases that involve lipid metabolism. This includes changes in FA composition in the liver, blood serum parameters and overall metabolic pathways. RNA-Seq data from 32 pigs were analyzed using Weighted Gene Co-expression Network Analysis (WGCNA). Our aim was to identify changes in blood serum parameters and gene expression between diets containing 3% soybean oil (SOY3.0) and a standard pig production diet containing 1.5% soybean oil (SOY1.5). Significantly, both the SOY1.5 and SOY3.0 groups showed significant modules, with a higher number of co-expressed modules identified in the SOY3.0 group. Correlated modules and specific features were identified, including enriched terms and pathways such as the histone acetyltransferase complex, type I diabetes mellitus pathway, cholesterol metabolism, and metabolic pathways in SOY1.5, and pathways related to neurodegeneration and Alzheimer's disease in SOY3.0. The variation in co-expression observed for HDL in the groups analyzed suggests different regulatory patterns in response to the higher concentration of soybean oil. Key genes co-expressed with metabolic processes indicative of diseases such as Alzheimer's was also identified, as well as genes related to lipid transport and energy metabolism, including CCL5, PNISR, DEGS1. These findings are important for understanding the genetic and metabolic responses to dietary variation and contribute to the development of more precise nutritional strategies.
Collapse
Affiliation(s)
- Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
| | - Júlia Dezen Gomes
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Francisco José de Novais
- Department of Agricultural, Food & Nutritional Science, Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB, Canada
| | - Izally Carvalho Gervásio
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Heidge Fukumasu
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
| | | | - Luiz Lehmann Coutinho
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - James Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Andreia J. Amaral
- Mediterranean Institute for Agriculture, Environment and Development (MED), Évora, Portugal
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinarian Medicine, University of Lisbon, Lisbon, Portugal
| | - Aline Silva Mello Cesar
- Faculty of Animal Science and Food Engineering, (FZEA), University of São Paulo, SãoPaulo, Brazil
- Department of Animal Science, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Department of Food Science and Technology, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| |
Collapse
|
2
|
Wang W, Abdelrahman M, Yang Y, Lv H, Yang L. RNA Sequencing Reveals the Inhibitory Effect of High Levels of Arachidonic Acid and Linoleic Acid on C2C12 Differentiation and Myogenic Biomarkers. Nutrients 2024; 16:706. [PMID: 38474834 DOI: 10.3390/nu16050706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past three decades, studies have shown that consuming polyunsaturated fatty acids (PUFAs) can enhance animal and human health and welfare through biological, biochemical, pathological, and pharmacological impacts. Furthermore, omega-6 plays key roles in the cardiopulmonary system, including promoting airway relaxation and inhibiting atherosclerosis and hypertension. However, findings from investigations of the effects of omega-6 fatty acids on molecular and cellular activity and discussions on their influence on biomarkers are still unclear. Therefore, the present study aimed to evaluate omega-6 fatty acids, the arachidonic acid (AA), and linoleic acid (LA) effects on C2C12 proliferation, myogenesis morphology, and relative myogenic biomarker expression through the Wnt pathway. C2C12 cells were cultured with and without 25, 50, 100, and 150 µM of LA and AA and then subjected to CCK8, Giemsa staining, RT qPCR, Western blotting, and RNA Sequencing. The CCK8 Assay results showed that 25, 50, 100, and 150 µM LA significantly decreased the viability after 72 h for 25, 50, 100, and 150 µM concentrations. Also, AA supplementation decreased cell viability after 24 h for 150 µM, 48 h for 150 µM, and 72 h for 50, 100, and 150 µM concentrations. Moreover, the LA and AA inhibitory effects noticed through Gimesa staining were morphological changes during myoblast differentiation. Both LA and AA showed inhibiting IGF1, Cola1, Col6a2, Col6a1, Itga10, Itga11, SFRP2, DAAM2, and NKD2 effects; however, the depressing effect was higher for AA compared to LA. The previous results were confirmed through Western blotting, which showed that 50 µM LA and AA significantly reduced DAAM2 and SFRP2 protein levels compared to the control. Regarding RNA sequencing results, LA and AA increased the number of differentially expressed (DE) Mt-rRNA and snoRNA; however, the numbers of lncRNA detected decreased compared to the control. Our findings demonstrate that high and moderate LA and AA concentrations reduce primary myoblast proliferation and differentiation. Also, they highlight novel biomarkers and regulatory factors to improve our understanding of how the nutrition of fatty acids can control and modulate the myogenesis and differentiation process through different biomarker families.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| | - Mohamed Abdelrahman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
- Animal Production Department, Faculty of Agriculture, Assuit University, Asyut 71515, Egypt
| | - Ying Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| | - Haimiao Lv
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| | - Liguo Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agriculture University, Wuhan 430070, China
| |
Collapse
|
3
|
Dietary fatty acids applied to pig production and their relation to the biological processes: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Bonos E, Skoufos I, Petrotos K, Giavasis I, Mitsagga C, Fotou K, Vasilopoulou K, Giannenas I, Gouva E, Tsinas A, D’Alessandro AG, Cardinali A, Tzora A. Innovative Use of Olive, Winery and Cheese Waste By-Products as Functional Ingredients in Broiler Nutrition. Vet Sci 2022; 9:vetsci9060290. [PMID: 35737342 PMCID: PMC9231388 DOI: 10.3390/vetsci9060290] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/27/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the dietary use of novel silage that was created by combining three agro-industrial wastes produced in bulk, i.e., olive mill wastewater, grape pomace, and deproteinized feta cheese whey, in the diets of broiler chickens. A total of 216 one-day-old male Ross-308 chicks were randomly allocated to three treatment groups with six replications (12 chicks per pen). Three isocaloric and isonitrogenous diets were formulated to include the examined silage at 0%, 5%, or 10%. Commercial breeding and management procedures were employed throughout the trial. At the end of the trial (day 35), tissue samples were collected for analysis. Feeding 10% silage resulted in increased (p ≤ 0.001) final body weight (p ≤ 0.001) and feed intake. Jejunum and cecum microflora, as well as breast and thigh meat microflora, were modified (p ≤ 0.05) by the dietary inclusion. Thigh meat oxidative stability was improved (p < 0.01) by the silage supplementation. In addition, breast and thigh meat fatty acid profiles were different, respectively, (p < 0.05) in the supplemented treatments compared to the control. The examined silage was successfully tested in broiler diets with potential benefits for their performance and meat quality.
Collapse
Affiliation(s)
- Eleftherios Bonos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (E.B.); (E.G.)
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (E.B.); (E.G.)
- Correspondence: ; Tel.: +0030-268-105-0204
| | - Konstantinos Petrotos
- Laboratory of Food and Biosystems Engineering, Department of Agrotechnology, School of Agricultural Sciences, Geopolis, University of Thessaly, 41500 Larisa, Greece;
| | - Ioannis Giavasis
- Laboratory of Biotechnology and Applied Microbiology, Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, End of N. Temponera Str., 43100 Karditsa, Greece; (I.G.); (C.M.)
| | - Chrysanthi Mitsagga
- Laboratory of Biotechnology and Applied Microbiology, Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, End of N. Temponera Str., 43100 Karditsa, Greece; (I.G.); (C.M.)
| | - Konstantina Fotou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (A.T.); (A.T.)
| | - Konstantina Vasilopoulou
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (I.G.)
| | - Ilias Giannenas
- Laboratory of Nutrition, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.V.); (I.G.)
| | - Evangelia Gouva
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (E.B.); (E.G.)
| | - Anastasios Tsinas
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (A.T.); (A.T.)
| | - Angela Gabriella D’Alessandro
- Department of Agro-Environmental and Territorial Sciences, University of Bari, Via Amendola 165/A, 70126 Bari, Italy;
| | - Angela Cardinali
- National Research Council—Institute of Science of Food Production, Via Amendola 122/O, 70126 Bari, Italy;
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece; (K.F.); (A.T.); (A.T.)
| |
Collapse
|
5
|
Huang C, Chiba L, Bergen W. Bioavailability and metabolism of omega-3 polyunsaturated fatty acids in pigs and omega-3 polyunsaturated fatty acid-enriched pork: A review. Livest Sci 2021. [DOI: 10.1016/j.livsci.2020.104370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Song P, Shen X. Juice from Fructus Rosae Roxburghii normalizes blood lipids in mice with diet-induced hyperlipidemia* †. Food Sci Nutr 2020; 8:6069-6082. [PMID: 33282259 PMCID: PMC7684604 DOI: 10.1002/fsn3.1897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Fructus Rosae Roxburghii (FRR) as a dietary supplement is considered to possess anti-atherosclerosis (AS), and hyperlipidemia (HLP) is material basis for AS formation, so the effects and molecular mechanism of FRR on diet-induced hyperlipidemic mice were explored. In Diet IV2 group, hepatic steatosis was significantly relieved; meanwhile, TC, TG, LDL-C, HDL-C, and ASI in serum were regulated to control level. Thirty-seven DCEG in Diet I, Diet II, and Diet IV2 groups were obtained by RNA-seq analysis. Relative mRNA levels were further determined by qRT-PCR, of which 28 genes were matched with those detected by RNA-seq. Ten DCEP were verified by targeted quantitative proteomic analysis, but expressive patterns of only six proteins were correlated with qRT-PCR data. These DCEG and DCEP played important roles in regulating the biosynthesis of BAs and steroids, fatty acid metabolism, and LPO production. They might cooperatively regulate the function of HDL or RCT by PPAR signaling pathway under the FRR action. As we know, it is the first time the potential anti-atherosclerotic mechanism of FRR regulating the blood lipids was explored.
Collapse
Affiliation(s)
- Pingping Song
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuiyangChina
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal PlantsGuizhou Medical UniversityGuiyangChina
- Key Laboratory of Optimal Utilization of Natural Medicine ResourcesSchool of Pharmaceutical SciencesGuizhou Medical UniversityGuiyangChina
| |
Collapse
|
7
|
Oczkowicz M, Szmatoła T, Świątkiewicz M, Koseniuk A, Smołucha G, Witarski W, Wierzbicka A. 3'quant mRNA-Seq of Porcine Liver Reveals Alterations in UPR, Acute Phase Response, and Cholesterol and Bile Acid Metabolism in Response to Different Dietary Fats. Genes (Basel) 2020; 11:genes11091087. [PMID: 32961898 PMCID: PMC7565913 DOI: 10.3390/genes11091087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/18/2022] Open
Abstract
Animal fats are considered to be unhealthy, in contrast to vegetable fats, which are rich in unsaturated fatty acids. However, the use of some fats, such as coconut oil, is still controversial. In our experiment, we divided experimental animals (domestic pigs) into three groups differing only in the type of fat used in the diet: group R: rapeseed oil (n = 5); group B: beef tallow (n = 5); group C: coconut oil (n = 6). After transcriptomic analysis of liver samples, we identified 188, 93, and 53 DEGs (differentially expressed genes) in R vs. B, R vs. C, and B vs. C comparisons, respectively. Next, we performed a functional analysis of identified DEGs with String and IPA software. We observed the enrichment of genes engaged in the unfolded protein response (UPR) and the acute phase response among genes upregulated in B compared to R. In contrast, cholesterol biosynthesis and cholesterol efflux enrichments were observed among genes downregulated in B when compared to R. Moreover, activation of the UPR and inhibition of the sirtuin signaling pathway were noted in C when compared to R. The most striking difference in liver transcriptomic response between C and B was the activation of the acute phase response and inhibition of bile acid synthesis in the latest group. Our results suggest that excessive consumption of animal fats leads to the activation of a cascade of mutually propelling processes harmful to the liver: inflammation, UPR, and imbalances in the biosynthesis of cholesterol and bile acids via altered organelle membrane composition. Nevertheless, these studies should be extended with analysis at the level of proteins and their function.
Collapse
Affiliation(s)
- Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Poland; (T.S.); (A.K.); (G.S.); (W.W.); (A.W.)
- Correspondence: ; Tel.: +48666081109
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Poland; (T.S.); (A.K.); (G.S.); (W.W.); (A.W.)
- Centre of Experimental and Innovative Medicine, University of Agriculture in Kraków, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Poland;
| | - Anna Koseniuk
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Poland; (T.S.); (A.K.); (G.S.); (W.W.); (A.W.)
| | - Grzegorz Smołucha
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Poland; (T.S.); (A.K.); (G.S.); (W.W.); (A.W.)
| | - Wojciech Witarski
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Poland; (T.S.); (A.K.); (G.S.); (W.W.); (A.W.)
| | - Alicja Wierzbicka
- Department of Animal Molecular Biology, National Research Institute of Animal Production, ul Krakowska 1, 32-083 Balice, Poland; (T.S.); (A.K.); (G.S.); (W.W.); (A.W.)
| |
Collapse
|
8
|
Ogłuszka M, te Pas MFW, Poławska E, Nawrocka A, Stepanow K, Pierzchała M. Omega-3 Alpha-Linolenic Fatty Acid Affects the Level of Telomere Binding Protein TRF1 in Porcine Skeletal Muscle. Animals (Basel) 2020; 10:ani10061090. [PMID: 32599751 PMCID: PMC7341232 DOI: 10.3390/ani10061090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/17/2023] Open
Abstract
Omega-3 fatty acids are health-promoting nutrients that contribute to the amelioration of age-related diseases. Recent studies have reported the role of these fatty acids in the aging process, explicitly impacting telomere biology. The shelterin protein complex, located at the extremities of chromosomes, ensures telomere protection and length regulation. Here, we analyzed the impact of dietary omega-3 alpha-linolenic fatty acid from linseed oil on skeletal muscle telomere biology using an animal model of female pigs. Fifteen animals were supplemented with linseed oil for nine weeks and an equal number of individuals were fed with a control diet. Linseed-oil-supplemented animals showed an increased level of alpha-linolenic acid in skeletal muscles compared to control animals. There was no difference between groups in the telomere length measured in leukocytes and muscles. However, muscles of the linseed-oil-supplemented pigs showed lower levels of the shelterin TRF1 protein compared to the control group. Our results suggest that omega-3 linolenic acid counteracts the elevation of TRF1 levels, which increase with age and due to the presence of reactive oxygen species in muscle. The observed effect may be due to attenuation of oxidative stress.
Collapse
Affiliation(s)
- Magdalena Ogłuszka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
- Correspondence:
| | - Marinus F. W. te Pas
- Animal Breeding and Genomics, Wageningen UR Livestock Research, 6700AH Wageningen, The Netherlands;
| | - Ewa Poławska
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Agata Nawrocka
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Kamila Stepanow
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| | - Mariusz Pierzchała
- Department of Genomics and Biodiversity, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (E.P.); (A.N.); (K.S.); (M.P.)
| |
Collapse
|
9
|
Skugor A, Kjos NP, Sundaram AYM, Mydland LT, Ånestad R, Tauson AH, Øverland M. Effects of long-term feeding of rapeseed meal on skeletal muscle transcriptome, production efficiency and meat quality traits in Norwegian Landrace growing-finishing pigs. PLoS One 2019; 14:e0220441. [PMID: 31390356 PMCID: PMC6685631 DOI: 10.1371/journal.pone.0220441] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 12/30/2022] Open
Abstract
This study was performed to investigate the effects of dietary inclusion of 20% rapeseed meal (RSM) as an alternative to soybean meal (SBM) in a three-month feeding experiment with growing finishing pigs. Dietary alteration affected growth performance, several carcass traits and transcriptional responses in the skeletal muscle, but did not affect measured meat quality traits. In general, pigs fed the RSM test diet exhibited reduced growth performance compared to pigs on SBM control diet. Significant transcriptional changes in the skeletal muscle of growing pigs fed RSM diet were likely the consequence of an increased amount of fiber and higher polyunsaturated fatty acids, and presence of bioactive phytochemicals, such as glucosinolates. RNAseq pipeline using Tophat2-Cuffdiff identified 57 upregulated and 63 downregulated genes in RSM compared to SBM pigs. Significantly enriched among downregulated pathways was p53-mediated signalling involved in cellular proliferation, while activation of negative growth regulators (IER5, KLF10, BTG2, KLF11, RETREG1, PRUNE2) in RSM fed pigs provided further evidence for reduced proliferation and increased cellular death, in accordance with the observed reduction in performance traits. Upregulation of well-known metabolic controllers (PDK4, UCP3, ESRRG and ESRRB), involved in energy homeostasis (glucose and lipid metabolism, and mitochondrial function), suggested less available energy and nutrients in RSM pigs. Furthermore, several genes supported more pronounced proteolysis (ABTB1, OTUD1, PADI2, SPP1) and reduced protein synthesis (THBS1, HSF4, AP1S2) in RSM muscle tissue. In parallel, higher levels of NR4A3, PDK4 and FGF21, and a drop in adropin, ELOVL6 and CIDEC/FSP27 indicated increased lipolysis and fatty acid oxidation, reflective of lower dressing percentage. Finally, pigs exposed to RSM showed greater expression level of genes responsive to oxidative stress, indicated by upregulation of GPX1, GPX2, and TXNIP.
Collapse
Affiliation(s)
- Adrijana Skugor
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Nils Petter Kjos
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Liv Torunn Mydland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Ragnhild Ånestad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Anne-Helene Tauson
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Margareth Øverland
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
10
|
Sirri R, Vitali M, Zambonelli P, Giannini G, Zappaterra M, Lo Fiego DP, Sami D, Davoli R. Effect of diets supplemented with linseed alone or combined with vitamin E and selenium or with plant extracts, on Longissimus thoracis transcriptome in growing-finishing Italian Large White pigs. J Anim Sci Biotechnol 2018; 9:81. [PMID: 30479765 PMCID: PMC6245756 DOI: 10.1186/s40104-018-0297-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022] Open
Abstract
Background Supplementing farm animals diet with functional ingredients may improve the nutritional quality of meat products. Diet composition has been also demonstrated to influence the gene expression with effect on biological processes and pathways. However, the knowledge on the effect of nutrients at the molecular level is scant. In particular, studies on the effects of antioxidants and polyphenols dietary supplementation have been investigated mainly in rodents, and only scarcely in farm animals so far. RNA-Seq with next-generation sequencing is increasingly the method of choice for studying changes in the transcriptome and it has been recently employed also in pig nutrigenomics studies to identify diet-induced changes in gene expression. The present study aimed to investigate the effect of diets enriched with functional ingredients (linseed, vitamin E and plant extracts) on the transcriptome of pig Longissimus thoracis to elucidate the role of these compounds in influencing genes involved in muscle physiology and metabolism compared to a standard diet. Results Eight hundred ninety-three significant differentially expressed genes (DEGs) (FDR adjusted P-value ≤ 0.05) were detected by RNA-Seq analysis in the three diet comparisons (D2-D1, D3-D1, D4-D1). The functional analysis of DEGs showed that the diet enriched with n-3 PUFA from linseed (D2) mostly downregulated genes in pathways and biological processes (BPs) related to muscle development, contraction, and glycogen metabolism compared to the standard diet. The diet supplemented with linseed and vitamin E/Selenium (D3) showed to mostly downregulate genes linked to oxidative phosphorylation. Only few genes involved in extracellular matrix (ECM) organization were upregulated by the D3. Finally, the comparison D4-D1 showed that the diet supplemented with linseed and plant extracts (D4) upregulated the majority of genes compared to D1 that were involved in a complex network of pathways and BPs all connected by hub genes. In particular, IGF2 was a hub gene connecting protein metabolism, ECM organization, immune system and lipid biosynthesis pathways. Conclusion The supplementation of pig diet with n-3 PUFA from linseed, antioxidants and plant-derived polyphenols can influence the expression of a relevant number of genes in Longissimus thoracis muscle that are involved in a variety of biochemical pathways linked to muscle function and metabolism.
Collapse
Affiliation(s)
- Rubina Sirri
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
| | - Marika Vitali
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy
| | - Paolo Zambonelli
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy.,2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Giulia Giannini
- 2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Martina Zappaterra
- 2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Domenico Pietro Lo Fiego
- 3Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Amendola 2, I-42122 Reggio Emilia, Italy.,4Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, P. le Europa, 1, I-42124 Reggio Emilia, Italy
| | - Dalal Sami
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy.,2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| | - Roberta Davoli
- 1Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Via Quinto Bucci 336, I-47521 Cesena, Italy.,2Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Fanin 46, I-40127 Bologna, Italy
| |
Collapse
|
11
|
Vitali M, Dimauro C, Sirri R, Zappaterra M, Zambonelli P, Manca E, Sami D, Lo Fiego DP, Davoli R. Effect of dietary polyunsaturated fatty acid and antioxidant supplementation on the transcriptional level of genes involved in lipid and energy metabolism in swine. PLoS One 2018; 13:e0204869. [PMID: 30286141 PMCID: PMC6171869 DOI: 10.1371/journal.pone.0204869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/14/2018] [Indexed: 01/15/2023] Open
Abstract
Porcine fat traits depend mostly on the interaction between nutritional and genetic factors. However, the pathways and biological processes influenced by this interaction are still poorly known in pigs, although they can have a huge impact on meat quality traits. The present research provides new knowledge insight into the effect of four diets (D1 = standard diet; D2 = linseed supplementation; D3 = linseed, vitamin E and selenium supplementation; D4 = linseed and plant-derived polyphenols supplementation) on the expression of 24 candidate genes selected for their role in lipid and energy metabolism. The data indicated that 10 out of 24 genes were differentially expressed among diets, namely ACACA, ADIPOQ, ADIPOR1, CHREBP (MLXPL), ELOVL6, FASN, G6PD, PLIN2, RXRA and SCD. Results from the univariate analysis displayed an increased expression of ACACA, ADIPOQ, ADIPOR1, CHREBP, ELOVL6, FASN, PLIN2, RXRA and SCD in D4 compared to D2. Similarly, ACACA, ADIPOQ, ADIPOR1, ELOVL6 and SCD were highly expressed in D4 compared to D3, while no differences were observed in D2-D3 comparison. Moreover, an increased expression of G6PD and ELOVL6 genes in D4 compared to D1 was observed. Results from the multivariate analysis confirmed that D2 was not different from D3 and that ACACA, SCD and FASN expression made D4 different from D2 and D3. Comparing D4 and D1, the expression levels of ELOVL6 and ACACA were the most influenced. This research provides evidence that the addition of both n-3 PUFA and polyphenols, derived from linseed, grape-skin and oregano supplementation in the diets, stimulates the expression of genes involved in lipogenesis and in oxidative processes. Results evidenced a greater effect on gene expression of the diet added with both plant extracts and n-3 PUFA, resulting in an increased expression of genes coding for fatty acid synthesis, desaturation and elongation in pig Longissimus thoracis muscle.
Collapse
Affiliation(s)
- Marika Vitali
- Interdepartmental Centre of Industrial Agrifood Research (CIRI- AGRO) University of Bologna, Cesena, Italy
| | - Corrado Dimauro
- Department of Agronomy, University of Sassari, Sassari, Italy
- * E-mail: (CD); (RD)
| | - Rubina Sirri
- Interdepartmental Centre of Industrial Agrifood Research (CIRI- AGRO) University of Bologna, Cesena, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Paolo Zambonelli
- Interdepartmental Centre of Industrial Agrifood Research (CIRI- AGRO) University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | | | - Dalal Sami
- Interdepartmental Centre of Industrial Agrifood Research (CIRI- AGRO) University of Bologna, Cesena, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio-Emilia, Reggio Emilia, Italy
- Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Davoli
- Interdepartmental Centre of Industrial Agrifood Research (CIRI- AGRO) University of Bologna, Cesena, Italy
- Department of Agronomy, University of Sassari, Sassari, Italy
- * E-mail: (CD); (RD)
| |
Collapse
|
12
|
Yang S, Wang Y, Wang L, Shi Z, Ou X, Wu D, Zhang X, Hu H, Yuan J, Wang W, Cao F, Liu G. RNA-Seq reveals differentially expressed genes affecting polyunsaturated fatty acids percentage in the Huangshan Black chicken population. PLoS One 2018; 13:e0195132. [PMID: 29672513 PMCID: PMC5908183 DOI: 10.1371/journal.pone.0195132] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Fatty acids metabolic products determine meat quality in chickens. Identifying genes associated with fatty acids composition could provide valuable information for the complex genetic networks of genes with underlying variations in fatty acids synthesis. RNA sequencing (RNA-Seq) was conducted to explore the chicken transcriptome from the thigh muscle tissue of 6 Huangshan Black Chickens with 3 extremely high and low phenotypic values for percentage of polyunsaturated fatty acids (PUFAs). In total, we obtained 41,139,108–44,901,729 uniquely mapped reads, which covered 74.15% of the current annotated transcripts including 18964 mRNA transcripts, across all the six thigh muscle tissue samples. Of these, we revealed 274 differentially expressed genes (DEGs) with a highly significant correlation with polyunsaturated fatty acids percentage between the comparison groups based on the ratio of PUFA/SFA. Gene ontology and pathway analysis indicated that the DEGs were enriched in particular biological processes affecting fatty acids metabolism, biosynthesis of unsaturated fatty acids (USFAs), and cell junction-related pathways. Integrated interpretation of differential gene expression and formerly reported quantitative trait loci (QTL) demonstrated that FADS2, DCN, FRZB, OGN, PRKAG3, LHFP, CHCHD10, CYTL1, FBLN5, and ADGRD1 are the most promising candidate genes affecting polyunsaturated fatty acids percentage.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Ying Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Lulu Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Zhaoyuan Shi
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xiaoqian Ou
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xinmiao Zhang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Hao Hu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Jia Yuan
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Wei Wang
- Agricultural Products Quality and Safety Supervision and Management Bureau, Xuancheng, Anhui, P. R. China
| | - Fuhu Cao
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
- * E-mail: (FC); (GL)
| | - Guoqing Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
- * E-mail: (FC); (GL)
| |
Collapse
|
13
|
Nwachukwu ID, Kouritzin TM, Aluko RE, Myrie SB. The role of omega-3 fatty acids in skeletal muscle anabolism, strength, and function in healthy and diseased states. J Food Biochem 2017. [DOI: 10.1111/jfbc.12435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ifeanyi D. Nwachukwu
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
- Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Canada
| | - Trevor M. Kouritzin
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
- Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Canada
| | - Rotimi E. Aluko
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
- Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Canada
| | - Semone B. Myrie
- Department of Human Nutritional Sciences; University of Manitoba; Winnipeg Canada
- Richardson Centre for Functional Foods and Nutraceuticals; University of Manitoba; Winnipeg Canada
| |
Collapse
|