1
|
Sriram M, Manonmani S, Gopalakrishnan C, Sheela V, Shanmugam A, Revanna Swamy KM, Suresh R. Breeding for brown plant hopper resistance in rice: recent updates and future perspectives. Mol Biol Rep 2024; 51:1038. [PMID: 39365503 DOI: 10.1007/s11033-024-09966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Rice yield is often threatened by various stresses caused by biotic and abiotic agents. Many biotic stress factors are known to cause crop growth and yield from seedling to maturity. The brown plant hopper (BPH) can potentially reduce the rice yield to an extent of up to 80%. Intensive research efforts in 1972 led to a better understanding of pathogens/insect and host-plant resistance. This resulted in the identification of about 70 BPH-resistant genes and quantitative trait loci (QTLs) from diversified sources including wild germplasm. However, the BPH-resistant improved varieties with a single resistant gene lose the effectiveness of the gene because of the evolution of new biotypes. This review inferred that the level of resistance durable when incorporating multiple 'R' gene combinations when compared to a single gene. Breeding tools like wide hybridization, biparental crosses, marker-assisted introgression, pyramiding, and genetic engineering have been widely employed to breed rice varieties with single or combination of 'R' genes conferring durable resistance to BPH. Many other genes like receptor-like kinase genes, transcriptional factors, etc., were also found to be involved in the resistant mechanisms of 'R' genes. Due to this, the durability of the resistance can be improved and the level of resistance of the 'R' genes can be increased by adopting newer breeding tools like genome editing which hold promise to develop rice varieties with stable resistance.
Collapse
Affiliation(s)
- Muthukumarasamy Sriram
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Swaminathan Manonmani
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Chellapan Gopalakrishnan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Venugopal Sheela
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Aravindan Shanmugam
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641003, India
| | - K M Revanna Swamy
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Ramalingam Suresh
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
2
|
Cheng X, Zhou G, Chen W, Tan L, Long Q, Cui F, Tan L, Zou G, Tan Y. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:219. [PMID: 39254868 PMCID: PMC11387466 DOI: 10.1007/s00122-024-04729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
In the past century, there have been great achievements in identifying resistance (R) genes and quantitative trait loci (QTLs) as well as revealing the corresponding molecular mechanisms for resistance in rice to major diseases and insect pests. The introgression of R genes to develop resistant rice cultivars has become the most effective and eco-friendly method to control pathogens/insects at present. However, little attention has been paid to durable and broad-spectrum resistance, which determines the real applicability of R genes. Here, we summarize all the R genes and QTLs conferring durable and broad-spectrum resistance in rice to fungal blast, bacterial leaf blight (BLB), and the brown planthopper (BPH) in molecular breeding. We discuss the molecular mechanisms and feasible methods of improving durable and broad-spectrum resistance to blast, BLB, and BPH. We will particularly focus on pyramiding multiple R genes or QTLs as the most useful method to improve durability and broaden the disease/insect spectrum in practical breeding regardless of its uncertainty. We believe that this review provides useful information for scientists and breeders in rice breeding for multiple stress resistance in the future.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Guohua Zhou
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Qishi Long
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Fusheng Cui
- Yichun Academy of Sciences (Jiangxi Selenium-Rich Industry Research Institute), Yichun, People's Republic of China
| | - Lei Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China.
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China.
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China.
| |
Collapse
|
3
|
Horgan FG. Virulence Adaptation by Rice Planthoppers and Leafhoppers to Resistance Genes and Loci: A Review. INSECTS 2024; 15:652. [PMID: 39336620 PMCID: PMC11432362 DOI: 10.3390/insects15090652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
In recent decades, research on developing and deploying resistant rice has accelerated due to the availability of modern molecular tools and, in particular, advances in marker-assisted selection. However, progress in understanding virulence adaptation has been relatively slow. This review tracks patterns in virulence adaptation to resistance genes (particularly Bph1, bph2, Bph3, and bph4) and examines the nature of virulence based on selection experiments, responses by virulent populations to differential rice varieties (i.e., varieties with different resistance genes), and breeding experiments that interpret the genetic mechanisms underlying adaptation. The review proposes that varietal resistance is best regarded as a combination of minor and major resistance traits against which planthoppers develop partial or complete virulence through heritable improvements that are reversable or through evolutionary adaptation, respectively. Agronomic practices, deployment patterns, and herbivore population pressures determine the rates of adaptation, and there is growing evidence that pesticide detoxification mechanisms can accelerate virulence adaptation. Research to delay adaptation has mainly focused on gene pyramiding (i.e., including ≥ two major genes in a variety) and multilines (i.e., including ≥ two resistant varieties in a field or landscape); however, these strategies have not been adequately tested and, if not managed properly, could inadvertently accelerate adaptation compared to sequential deployment. Several research gaps remain and considerable improvements in research methods are required to better understand and manage virulence adaptation.
Collapse
Affiliation(s)
- Finbarr G. Horgan
- EcoLaVerna Integral Restoration Ecology, Bridestown, Kildinan, T56 P499 County Cork, Ireland;
- Faculty of Agrarian and Forest Sciences, School of Agronomy, Catholic University of Maule, Casilla 7-D, Curicó 3349001, Chile
- Centre for Pesticide Suicide Prevention, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
4
|
Zhou C, Jiang W, Guo J, Zhu L, Liu L, Liu S, Chen R, Du B, Huang J. Genome-wide association study and genomic prediction for resistance to brown planthopper in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1373081. [PMID: 38576786 PMCID: PMC10991774 DOI: 10.3389/fpls.2024.1373081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
The brown planthopper (BPH) is the most destructive insect pest that threatens rice production globally. Developing rice varieties incorporating BPH-resistant genes has proven to be an effective control measure against BPH. In this study, we assessed the resistance of a core collection consisting of 502 rice germplasms by evaluating resistance scores, weight gain rates and honeydew excretions. A total of 117 rice varieties (23.31%) exhibited resistance to BPH. Genome-wide association studies (GWAS) were performed on both the entire panel of 502 rice varieties and its subspecies, and 6 loci were significantly associated with resistance scores (P value < 1.0e-8). Within these loci, we identified eight candidate genes encoding receptor-like protein kinase (RLK), nucleotide-binding and leucine-rich repeat (NB-LRR), or LRR proteins. Two loci had not been detected in previous study and were entirely novel. Furthermore, we evaluated the predictive ability of genomic selection for resistance to BPH. The results revealed that the highest prediction accuracy for BPH resistance reached 0.633. As expected, the prediction accuracy increased progressively with an increasing number of SNPs, and a total of 6.7K SNPs displayed comparable accuracy to 268K SNPs. Among various statistical models tested, the random forest model exhibited superior predictive accuracy. Moreover, increasing the size of training population improved prediction accuracy; however, there was no significant difference in prediction accuracy between a training population size of 737 and 1179. Additionally, when there existed close genetic relatedness between the training and validation populations, higher prediction accuracies were observed compared to scenarios when they were genetically distant. These findings provide valuable resistance candidate genes and germplasm resources and are crucial for the application of genomic selection for breeding durable BPH-resistant rice varieties.
Collapse
Affiliation(s)
- Cong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weihua Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lijiang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shengyi Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Huang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Shi S, Wang H, Zha W, Wu Y, Liu K, Xu D, He G, Zhou L, You A. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers ( Nilaparvata lugens Stål). Int J Mol Sci 2023; 24:16959. [PMID: 38069282 PMCID: PMC10707318 DOI: 10.3390/ijms242316959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Huiying Wang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Deze Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
6
|
Pan L, Gai J, Xing G. The Identification of a Quantative Trait Loci-Allele System of Antixenosis against the Common Cutworm ( Spodoptera litura Fabricius) at the Seedling Stage in the Chinese Soybean Landrace Population. Int J Mol Sci 2023; 24:16089. [PMID: 38003278 PMCID: PMC10671034 DOI: 10.3390/ijms242216089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Common cutworm (CCW) is an omnivorous insect causing severe yield losses in soybean crops. The seedling-stage mini-tray identification system with the damaged leaf percentage (DLP) as an indicator was used to evaluate antixenosis against CCW in the Chinese soybean landrace population (CSLRP) under three environments. Using the innovative restricted two-stage multi-locus genome-wide association study procedure (RTM-GWAS), 86 DLP QTLs with 243 alleles (2-11/QTL) were identified, including 66 main-effect loci with 203 alleles and 57 QTL-environment interaction loci with 172 alleles. Among the main-effect loci, 12 large-contribution loci (R2 ≥ 1%) explained 25.45% of the phenotypic variation (PV), and 54 small-contribution loci (R2 < 1%) explained 16.55% of the PV. This indicates that the CSLRP can be characterized with a DLP QTL-allele system complex that has not been found before, except for a few individual QTLs without alleles involved. From the DLP QTL-allele matrix, the recombination potentials expressed in the 25th percentile of the DLP of all possible crosses were predicted to be reduced by 41.5% as the maximum improvement and 14.2% as the maximum transgression, indicating great breeding potential in the antixenosis of the CSLRP. From the QTLs, 62 candidate genes were annotated, which were involved in eight biological function categories as a gene network of the DLP. Changing from susceptible to moderate plus resistant varieties in the CSLRP, 26 QTLs had 32 alleles involved, in which 19 genes were annotated from 25 QTL-alleles, including eight increased negative alleles on seven loci and 11 decreased positive alleles on 11 loci, showing the major genetic constitution changes for the antixenosis enhancement at the seedling stage in the CSLRP.
Collapse
Affiliation(s)
| | - Junyi Gai
- Soybean Research Institute & MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & State Key Laboratory of Crop Genetics, Germplasm Enhancement and Utilization & State Innovation Platform for Industry-Education Integration in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangnan Xing
- Soybean Research Institute & MARA National Center for Soybean Improvement & MARA Key Laboratory of Biology and Genetic Improvement of Soybean & State Key Laboratory of Crop Genetics, Germplasm Enhancement and Utilization & State Innovation Platform for Industry-Education Integration in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Yan L, Luo T, Huang D, Wei M, Ma Z, Liu C, Qin Y, Zhou X, Lu Y, Li R, Qin G, Zhang Y. Recent Advances in Molecular Mechanism and Breeding Utilization of Brown Planthopper Resistance Genes in Rice: An Integrated Review. Int J Mol Sci 2023; 24:12061. [PMID: 37569437 PMCID: PMC10419156 DOI: 10.3390/ijms241512061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Over half of the world's population relies on rice as their staple food. The brown planthopper (Nilaparvata lugens Stål, BPH) is a significant insect pest that leads to global reductions in rice yields. Breeding rice varieties that are resistant to BPH has been acknowledged as the most cost-effective and efficient strategy to mitigate BPH infestation. Consequently, the exploration of BPH-resistant genes in rice and the development of resistant rice varieties have become focal points of interest and research for breeders. In this review, we summarized the latest advancements in the localization, cloning, molecular mechanisms, and breeding of BPH-resistant rice. Currently, a total of 70 BPH-resistant gene loci have been identified in rice, 64 out of 70 genes/QTLs were mapped on chromosomes 1, 2, 3, 4, 6, 8, 10, 11, and 12, respectively, with 17 of them successfully cloned. These genes primarily encode five types of proteins: lectin receptor kinase (LecRK), coiled-coil-nucleotide-binding-leucine-rich repeat (CC-NB-LRR), B3-DNA binding domain, leucine-rich repeat domain (LRD), and short consensus repeat (SCR). Through mediating plant hormone signaling, calcium ion signaling, protein kinase cascade activation of cell proliferation, transcription factors, and miRNA signaling pathways, these genes induce the deposition of callose and cell wall thickening in rice tissues, ultimately leading to the inhibition of BPH feeding and the formation of resistance mechanisms against BPH damage. Furthermore, we discussed the applications of these resistance genes in the genetic improvement and breeding of rice. Functional studies of these insect-resistant genes and the elucidation of their network mechanisms establish a strong theoretical foundation for investigating the interaction between rice and BPH. Furthermore, they provide ample genetic resources and technical support for achieving sustainable BPH control and developing innovative insect resistance strategies.
Collapse
Affiliation(s)
- Liuhui Yan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Dahui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Minyi Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Chi Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yuanyuan Qin
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiaolong Zhou
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yingping Lu
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Gang Qin
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yuexiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| |
Collapse
|
8
|
Qin Y, Zhao H, Han H, Zhu G, Wang Z, Li F. Chromosome-Level Genome Assembly and Population Genomic Analyses Reveal Geographic Variation and Population Genetic Structure of Prunus tenella. Int J Mol Sci 2023; 24:11735. [PMID: 37511492 PMCID: PMC10380494 DOI: 10.3390/ijms241411735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Prunus tenella is a rare and precious relict plant in China. It is an important genetic resource for almond improvement and an indispensable material in ecological protection and landscaping. However, the research into molecular breeding and genetic evolution has been severely restricted due to the lack of genome information. In this investigation, we created a chromosome-level genomic pattern of P. tenella, 231 Mb in length with a contig N50 of 18.1 Mb by Hi-C techniques and high-accuracy PacBio HiFi sequencing. The present assembly predicted 32,088 protein-coding genes, and an examination of the genome assembly indicated that 94.7% among all assembled transcripts were alignable to the genome assembly; most (97.24%) were functionally annotated. By phylogenomic genome comparison, we found that P. tenella is an ancient group that diverged approximately 13.4 million years ago (mya) from 13 additional closely related species and about 6.5 Mya from the cultivated almond. Collinearity analysis revealed that P. tenella is highly syntenic and has high sequence conservation with almond and peach. However, this species also exhibits many presence/absence variants. Moreover, a large inversion at the 7588 kb position of chromosome 5 was observed, which may have a significant association with phenotypic traits. Lastly, population genetic structure analysis in eight different populations indicated a high genetic differentiation among the natural distribution of P. tenella. This high-quality genome assembly provides critical clues and comprehensive information for the systematic evolution, genetic characteristics, and functional gene research of P. tenella. Moreover, it provides a valuable genomic resource for in-depth study in protection, developing, and utilizing P. tenella germplasm resources.
Collapse
Affiliation(s)
- Yue Qin
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Han Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Hongwei Han
- Economic Forest Research Institute, Xinjiang Academy of Forestry, Urumqi 830000, China
| | - Gaopu Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Zhaoshan Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fangdong Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
9
|
Pannak S, Wanchana S, Aesomnuk W, Pitaloka MK, Jamboonsri W, Siangliw M, Meyers BC, Toojinda T, Arikit S. Functional Bph14 from Rathu Heenati promotes resistance to BPH at the early seedling stage of rice (Oryza sativa L.) as revealed by QTL-seq. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:25. [PMID: 36781491 DOI: 10.1007/s00122-023-04318-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
A QTL associated with BPH resistance at the early seedling stage was identified on chromosome 3. Functional Bph14 in Rathu Heenati was associated with BPH resistance at the early seedling stage. Brown planthopper (BPH; Nilaparvata lugens Stål) is considered the most important rice pest in many Asian countries. Several BPH resistance genes have previously been identified. However, there are few reports of genes specific for BPH resistance at the early seedling stage, a crucial stage for direct-seeding cultivation. In this study, we performed a QTL-seq analysis using two bulks (20 F2 lines in each bulk) of the F2 population (n = 300) derived from a cross of Rathu Heenati (RH) × HCS-1 to identify QTL/genes associated with BPH resistance at the early seedling stage. An important QTL was identified on chromosome 3 and Bph14 was identified as a potential candidate gene based on the differences in gene expression and sequence variation when compared with the two parents. All plants in the resistant bulks possessed the functional Bph14 from RH and all plants in the susceptible bulk and HCS-1 contained a large deletion (2703 bp) in Bph14. The functional Bph14 gene of RH appears to be important for BPH resistance at the early seedling stage of rice and could be used in conjunction with other BPH resistance genes in rice breeding programs that confer resistance to BPH at the early and later growth stages.
Collapse
Affiliation(s)
- Sarinthip Pannak
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
- Center of Excellence On Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok, 10900, Thailand
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Mutiara K Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand
| | - Watchareewan Jamboonsri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Meechai Siangliw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Blake C Meyers
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, 12120, PathumThani, Thailand
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, 73140, Thailand.
| |
Collapse
|
10
|
Wani SH, Choudhary M, Barmukh R, Bagaria PK, Samantara K, Razzaq A, Jaba J, Ba MN, Varshney RK. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3875-3895. [PMID: 35267056 PMCID: PMC9729161 DOI: 10.1007/s00122-022-04060-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/11/2022] [Indexed: 05/03/2023]
Abstract
Improving crop resistance against insect pests is crucial for ensuring future food security. Integrating genomics with modern breeding methods holds enormous potential in dissecting the genetic architecture of this complex trait and accelerating crop improvement. Insect resistance in crops has been a major research objective in several crop improvement programs. However, the use of conventional breeding methods to develop high-yielding cultivars with sustainable and durable insect pest resistance has been largely unsuccessful. The use of molecular markers for identification and deployment of insect resistance quantitative trait loci (QTLs) can fastrack traditional breeding methods. Till date, several QTLs for insect pest resistance have been identified in field-grown crops, and a few of them have been cloned by positional cloning approaches. Genome editing technologies, such as CRISPR/Cas9, are paving the way to tailor insect pest resistance loci for designing crops for the future. Here, we provide an overview of diverse defense mechanisms exerted by plants in response to insect pest attack, and review recent advances in genomics research and genetic improvements for insect pest resistance in major field crops. Finally, we discuss the scope for genomic breeding strategies to develop more durable insect pest resistant crops.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, J&K, 192101, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pravin K Bagaria
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Jagdish Jaba
- Intergated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Malick Niango Ba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 12404, Niamey, Niger
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
11
|
Zha W, Li S, Xu H, Chen J, Liu K, Li P, Liu K, Yang G, Chen Z, Shi S, Zhou L, You A. Genome-wide identification of long non-coding (lncRNA) in Nilaparvata lugens's adaptability to resistant rice. PeerJ 2022; 10:e13587. [PMID: 35910769 PMCID: PMC9332332 DOI: 10.7717/peerj.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/24/2022] [Indexed: 01/22/2023] Open
Abstract
Background The brown planthopper (BPH), Nilaparvata lugens (Stål), is a very destructive pest that poses a major threat to rice plants worldwide. BPH and rice have developed complex feeding and defense strategies in the long-term co-evolution. Methods To explore the molecular mechanism of BPH's adaptation to resistant rice varieties, the lncRNA expression profiles of two virulent BPH populations were analyzed. The RNA-seq method was used to obtain the lncRNA expression data in TN1 and YHY15. Results In total, 3,112 highly reliable lncRNAs in TN1 and YHY15 were identified. Compared to the expression profiles between TN1 and YHY15, 157 differentially expressed lncRNAs, and 675 differentially expressed mRNAs were identified. Further analysis of the possible regulation relationships between differentially expressed lncRNAs and differentially expressed mRNAs, identified three pair antisense targets, nine pair cis-regulation targets, and 3,972 pair co-expressed targets. Function enriched found arginine and proline metabolism, glutathione metabolism, and carbon metabolism categories may significantly affect the adaptability in BPH when it is exposed to susceptible and resistant rice varieties. Altogether, it provided scientific data for the study of lncRNA regulation of brown planthopper resistance to rice. These results are helpful in the development of new control strategies for host defense against BPH and breeding rice for high yield.
Collapse
Affiliation(s)
- Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huashan Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Peide Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guocai Yang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhijun Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
12
|
Ishwarya Lakshmi VG, Sreedhar M, JhansiLakshmi V, Gireesh C, Rathod S, Bohar R, Deshpande S, Laavanya R, Kiranmayee KNSU, Siddi S, Vanisri S. Development and Validation of Diagnostic KASP Markers for Brown Planthopper Resistance in Rice. Front Genet 2022; 13:914131. [PMID: 35899197 PMCID: PMC9309266 DOI: 10.3389/fgene.2022.914131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Rice (Oryza sativa L.) is an important source of nutrition for the world's burgeoning population that often faces yield loss due to infestation by the brown planthopper (BPH, Nilaparvata lugens (Stål)). The development of rice cultivars with BPH resistance is one of the crucial precedences in rice breeding programs. Recent progress in high-throughput SNP-based genotyping technology has made it possible to develop markers linked to the BPH more quickly than ever before. With this view, a genome-wide association study was undertaken for deriving marker-trait associations with BPH damage scores and SNPs from genotyping-by-sequencing data of 391 multi-parent advanced generation inter-cross (MAGIC) lines. A total of 23 significant SNPs involved in stress resistance pathways were selected from a general linear model along with 31 SNPs reported from a FarmCPU model in previous studies. Of these 54 SNPs, 20 were selected in such a way to cover 13 stress-related genes. Kompetitive allele-specific PCR (KASP) assays were designed for the 20 selected SNPs and were subsequently used in validating the genotypes that were identified, six SNPs, viz, snpOS00912, snpOS00915, snpOS00922, snpOS00923, snpOS00927, and snpOS00929 as efficient in distinguishing the genotypes into BPH-resistant and susceptible clusters. Bph17 and Bph32 genes that are highly effective against the biotype 4 of the BPH have been validated by gene specific SNPs with favorable alleles in M201, M272, M344, RathuHeenati, and RathuHeenati accession. These identified genotypes could be useful as donors for transferring BPH resistance into popular varieties with marker-assisted selection using these diagnostic SNPs. The resistant lines and the significant SNPs unearthed from our study can be useful in developing BPH-resistant varieties after validating them in biparental populations with the potential usefulness of SNPs as causal markers.
Collapse
Affiliation(s)
- V. G. Ishwarya Lakshmi
- Department of Genetics and Plant Breeding, College of Agriculture, Professor Jayashankar Telangana State Agricultural University (PJTSAU), Hyderabad, India
| | - M. Sreedhar
- Administrative Office, PJTSAU, Hyderabad, India
| | | | - C. Gireesh
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Santosha Rathod
- ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Rajaguru Bohar
- CGIAR Excellence in Breeding (EiB), CIMMYT-ICRISAT, Hyderabad, India
| | - Santosh Deshpande
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - R. Laavanya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | | | - Sreedhar Siddi
- Agricultural Research Station, PJTSAU, Peddapalli, India
| | - S. Vanisri
- Institute of Biotechnology, PJTSAU, Hyderabad, India
| |
Collapse
|
13
|
Nguyen CD, Zheng SH, Sanada-Morimura S, Matsumura M, Yasui H, Fujita D. Substitution mapping and characterization of brown planthopper resistance genes from indica rice variety, 'PTB33' ( Oryza sativa L.). BREEDING SCIENCE 2021; 71:497-509. [PMID: 35087314 PMCID: PMC8784355 DOI: 10.1270/jsbbs.21034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/02/2021] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa L.) yield is severely reduced by the brown planthopper (BPH), Nilaparvata lugens Stål, in Asian countries. Increasing resistance in rice against BPH can mitigate yield loss. Previous reports indicated the presence of three BPH resistance genes, BPH2, BPH17-ptb, and BPH32, in durable resistant indica rice cultivar 'PTB33'. However, several important questions remain unclear; the genetic locations of BPH resistance genes on rice chromosomes and how these genes confer resistance, especially with relationship to three major categories of resistance mechanisms; antibiosis, antixenosis or tolerance. In this study, locations of BPH2, BPH17-ptb, and BPH32 were delimited using chromosome segment substitution lines derived from crosses between 'Taichung 65' and near-isogenic lines for BPH2 (BPH2-NIL), BPH17-ptb (BPH17-ptb-NIL), and BPH32 (BPH32-NIL). BPH2 was delimited as approximately 247.5 kbp between RM28449 and ID-161-2 on chromosome 12. BPH17-ptb and BPH32 were located between RM1305 and RM6156 on chromosome 4 and RM508 and RM19341 on chromosome 6, respectively. The antibiosis, antixenosis, and tolerance were estimated by several tests using BPH2-NIL, BPH17-ptb-NIL, and BPH32-NIL. BPH2 and BPH17-ptb showed resistance to antibiosis and antixenosis, while BPH17-ptb and BPH32 showed tolerance. These results contribute to the development of durable BPH resistance lines using three resistance genes from 'PTB33'.
Collapse
Affiliation(s)
- Cuong Dinh Nguyen
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Biotechnology Department, College of Food Industry, 101B Le Huu Trac Street, Son Tra District, Da Nang City 550000, Vietnam
| | - Shao-Hui Zheng
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Sachiyo Sanada-Morimura
- Agro-Enviroment Research Division, Kyushu Okinawa Agricultural Research Center, NARO, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Masaya Matsumura
- Division of Applied Entomology and Zoology, Central Region Agricultural Research Center, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daisuke Fujita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|
14
|
Prahalada GD, Marathi B, Vinarao R, Kim SR, Diocton R, Ramos J, Jena KK. QTL Mapping of a Novel Genomic Region Associated with High Out-Crossing Rate Derived from Oryza longistaminata and Development of New CMS Lines in Rice, O. sativa L. RICE (NEW YORK, N.Y.) 2021; 14:80. [PMID: 34529158 PMCID: PMC8446144 DOI: 10.1186/s12284-021-00521-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/30/2021] [Indexed: 05/27/2023]
Abstract
High seed cost due to poor seed yield severely limits the adoption of hybrid rice by farmers. Increasing the out-crossing rate is one of the key strategies to increase hybrid seed production. Out-crossing rate is highly influenced by the size of female floral traits, which capture pollen grains from male donor plants. In the current study, we identified 14 QTLs derived from the perennial wild rice Oryza longistaminata by composite interval mapping for five key floral traits: stigma length (five), style length (three), stigma breadth (two), stigma area (one), and pistil length (three). QTL analysis and correlation studies revealed that these stigma traits were positively correlated and pleiotropic to the stigma length trait. We selected the major-effect QTL qSTGL8.0 conferring long stigma phenotype for further fine mapping and marker-assisted selection. The qSTGL8.0 (~ 3.9 Mb) was fine mapped using newly developed internal markers and was narrowed down to ~ 2.9 Mb size (RM7356-RM256 markers). Further, the flanking markers were validated in a segregating population and in progenies from different genetic backgrounds. The markers PA08-03 and PA08-18 showed the highest co-segregation with the stigma traits. The qSTGL8.0 was introgressed into two cytoplasmic male sterile (CMS) lines, IR58025A and IR68897A, by foreground, background, and trait selection approaches. The qSTGL8.0 introgression lines in CMS backgrounds showed a significantly higher seed setting rate (2.5-3.0-fold) than the original CMS lines in test crosses with their corresponding maintainer lines. The newly identified QTLs especially qSTGL8.0, will be quite useful for increasing out-crossing rate and this will contribute to increase seed production and decrease seed cost.
Collapse
Affiliation(s)
- G D Prahalada
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Balram Marathi
- PJ Telangana State Agricultural University, Hyderabad, Telangana, 500030, India
| | - Ricky Vinarao
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sung-Ryul Kim
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Reynaldo Diocton
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Joie Ramos
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Kshirod K Jena
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
15
|
Zheng X, Zhu L, He G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation. CURRENT OPINION IN INSECT SCIENCE 2021; 45:14-20. [PMID: 33227482 DOI: 10.1016/j.cois.2020.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The variability of brown planthopper (BPH) populations and diversity of the host rice germplasm provide an ideal model for exploring the genetic and molecular basis of insect-plant interactions. During the long-term evolutionary arms race, complicated feeding and defense strategies have developed in BPH and rice. Nine major BPH resistance genes have been cloned and the exploration of BPH resistance genes medicated mechanism against BPH shed a light on the molecular basis of the rice-BPH interaction. This short review provides an update on our current understanding of the genetic and molecular mechanism for rice resistance and BPH adaptation. Understanding the interactions between BPH and rice will provide novel insights for sustainable control of this pest.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Moin M, Saha A, Bakshi A, D. D, M.S. M, P.B. K. Study on Transcriptional Responses and Identification of Ribosomal Protein Genes for Potential Resistance against Brown Planthopper and Gall Midge Pests in Rice. Curr Genomics 2021; 22:98-110. [PMID: 34220297 PMCID: PMC8188583 DOI: 10.2174/1389202922666210219113220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/04/2020] [Accepted: 01/02/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Our previous studies have revealed the roles of ribosomal protein (RP) genes in the abiotic stress responses of rice. METHODS In the current investigation, we examine the possible involvement of these genes in insect stress responses. We have characterized the RP genes that included both Ribosomal Protein Large (RPL) and Ribosomal Protein Small (RPS) subunit genes in response to infestation by two economically important insect pests, the brown planthopper (BPH) and the Asian rice gall midge (GM) in rice. Differential transcript patterns of seventy selected RP genes were studied in a susceptible and a resistant genotype of indica rice: BPT5204 and RPNF05, respectively. An in silico analyses of the upstream regions of these genes also revealed the presence of cis-elements that are associated with wound signaling. RESULTS We identified the genes that were up or downregulated in either one of the genotypes, or both of them after pest infestation. The transcript patterns of a majority of the genes were found to be temporally-regulated by both the pests. In the resistant RPNF05, BPH infestation activated RPL15, L51 and RPS5a genes while GM infestation induced RPL15, L18a, L22, L36.2, L38, RPS5, S9.2 and S25a at a certain point of time. These genes that were particularly upregulated in the resistant genotype, RPNF05, but not in BPT5204 suggest their potential involvement in plant resistance against either of the two pests studied. CONCLUSION Taken together, RPL15, L51, L18a, RPS5, S5a, S9.2, and S25a appear to be the genes with possible roles in insect resistance in rice.
Collapse
Affiliation(s)
- Mazahar Moin
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Anusree Saha
- Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
| | - Achala Bakshi
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Divya D.
- Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad-500030, India
| | - Madhav M.S.
- Biotechnology Division, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad-500030, India
| | - Kirti P.B.
- Department of Plant Sciences, University of Hyderabad, Hyderabad-500046, India
- Agri-Biotech Foundation, PJTS Agricultural University, Hyderabad-500030, India
| |
Collapse
|
17
|
Satturu V, Vattikuti JL, J DS, Kumar A, Singh RK, M SP, Zaw H, Jubay ML, Satish L, Rathore A, Mulinti S, Lakshmi VG I, Fiyaz R. A, Chakraborty A, Thirunavukkarasu N. Multiple Genome Wide Association Mapping Models Identify Quantitative Trait Nucleotides for Brown Planthopper ( Nilaparvata lugens) Resistance in MAGIC Indica Population of Rice. Vaccines (Basel) 2020; 8:vaccines8040608. [PMID: 33066559 PMCID: PMC7712083 DOI: 10.3390/vaccines8040608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Brown planthopper (BPH), one of the most important pests of the rice (Oryza sativa) crop, becomes catastrophic under severe infestations and causes up to 60% yield loss. The highly disastrous BPH biotype in the Indian sub-continent is Biotype 4, which also known as the South Asian Biotype. Though many resistance genes were mapped until now, the utility of the resistance genes in the breeding programs is limited due to the breakdown of resistance and emergence of new biotypes. Hence, to identify the resistance genes for this economically important pest, we have used a multi-parent advanced generation intercross (MAGIC) panel consisting of 391 lines developed from eight indica founder parents. The panel was phenotyped at the controlled conditions for two consecutive years. A set of 27,041 cured polymorphic single nucleotide polymorphism (SNPs) and across-year phenotypic data were used for the identification of marker–trait associations. Genome-wide association analysis was performed to find out consistent associations by employing four single and two multi-locus models. Sixty-one SNPs were consistently detected by all six models. A set of 190 significant marker-associations identified by fixed and random model circulating probability unification (FarmCPU) were considered for searching resistance candidate genes. The highest number of annotated genes were found in chromosome 6 followed by 5 and 1. Ninety-two annotated genes identified across chromosomes of which 13 genes are associated BPH resistance including NB-ARC (nucleotide binding in APAF-1, R gene products, and CED-4) domain-containing protein, NHL repeat-containing protein, LRR containing protein, and WRKY70. The significant SNPs and resistant lines identified from our study could be used for an accelerated breeding program to develop new BPH resistant cultivars.
Collapse
Affiliation(s)
- Vanisri Satturu
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India; (D.S.J.); (I.L.V.)
- Correspondence: ; Tel.: +91-8186945838
| | - Jhansi Lakshmi Vattikuti
- Entomology, Pathology and Plant breeding Division, Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad 500030, India; (J.L.V.); (S.P.M.); (A.F.R.)
| | - Durga Sai J
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India; (D.S.J.); (I.L.V.)
| | - Arvind Kumar
- Plant Breeding Division, International Rice Research Institute (IRRI)-South Asia Hub (SAH), Patancheru, Hyderabad 502324, India;
| | - Rakesh Kumar Singh
- Plant Breeding Division, International Rice Research Institute (IRRI), Metro Manila 1226, Philippines; (R.K.S.); (H.Z.); (M.L.J.)
- Program Leader and Principal Scientist (Plant Breeding), Crop Diversification and Genetics, International Center for Biosaline Agriculture, Academic City, Dubai 14660, UAE
| | - Srinivas Prasad M
- Entomology, Pathology and Plant breeding Division, Indian Institute of Rice Research (ICAR-IIRR), Rajendranagar, Hyderabad 500030, India; (J.L.V.); (S.P.M.); (A.F.R.)
| | - Hein Zaw
- Plant Breeding Division, International Rice Research Institute (IRRI), Metro Manila 1226, Philippines; (R.K.S.); (H.Z.); (M.L.J.)
- Department of Agriculture, Plant Biotechnology Center, Shwe Nanthar, Mingalardon Township, Yangon 11021, Myanmar
| | - Mona Liza Jubay
- Plant Breeding Division, International Rice Research Institute (IRRI), Metro Manila 1226, Philippines; (R.K.S.); (H.Z.); (M.L.J.)
| | - Lakkakula Satish
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel;
| | - Abhishek Rathore
- Agriculture Statistics Division, International Crops Research for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, India;
| | - Sreedhar Mulinti
- MFPI-Quality Control Lab, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Ishwarya Lakshmi VG
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India; (D.S.J.); (I.L.V.)
| | - Abdul Fiyaz R.
- Institute of Biotechnology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India; (D.S.J.); (I.L.V.)
| | - Animikha Chakraborty
- Plant Breeding Division, Indian Institute of Millets Research (ICAR-IIMR), Rajendranagar, Hyderabad 500030, India; (A.C.); (N.T.)
| | - Nepolean Thirunavukkarasu
- Plant Breeding Division, Indian Institute of Millets Research (ICAR-IIMR), Rajendranagar, Hyderabad 500030, India; (A.C.); (N.T.)
| |
Collapse
|
18
|
Sani Haliru B, Rafii MY, Mazlan N, Ramlee SI, Muhammad I, Silas Akos I, Halidu J, Swaray S, Rini Bashir Y. Recent Strategies for Detection and Improvement of Brown Planthopper Resistance Genes in Rice: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1202. [PMID: 32937908 PMCID: PMC7569854 DOI: 10.3390/plants9091202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Brown planthopper (BPH; Nilaparvata lugens Stal) is considered the main rice insect pest in Asia. Several BPH-resistant varieties of rice have been bred previously and released for large-scale production in various rice-growing regions. However, the frequent surfacing of new BPH biotypes necessitates the evolution of new rice varieties that have a wide genetic base to overcome BPH attacks. Nowadays, with the introduction of molecular approaches in varietal development, it is possible to combine multiple genes from diverse sources into a single genetic background for durable resistance. At present, above 37 BPH-resistant genes/polygenes have been detected from wild species and indica varieties, which are situated on chromosomes 1, 3, 4, 6, 7, 8, 9, 10, 11 and 12. Five BPH gene clusters have been identified from chromosomes 3, 4, 6, and 12. In addition, eight BPH-resistant genes have been successfully cloned. It is hoped that many more resistance genes will be explored through screening of additional domesticated and undomesticated species in due course.
Collapse
Affiliation(s)
- Bello Sani Haliru
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
- Department of Crop Science, Usmanu Danfodiyo University, Sokoto P. M. B. 2346, Sokoto State, Nigeria
| | - Mohd Y. Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Norida Mazlan
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Shairul Izan Ramlee
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Isma’ila Muhammad
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Ibrahim Silas Akos
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Jamilu Halidu
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Senesie Swaray
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Yusuf Rini Bashir
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| |
Collapse
|
19
|
Zha W, You A. Comparative iTRAQ proteomic profiling of proteins associated with the adaptation of brown planthopper to moderately resistant vs. susceptible rice varieties. PLoS One 2020; 15:e0238549. [PMID: 32903256 PMCID: PMC7480849 DOI: 10.1371/journal.pone.0238549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is a destructive pest that poses a significant threat to rice plants worldwide. To explore how BPHs adapt to the resistant rice variety, we analyzed proteomics profiles of two virulent N. lugens populations. We focused on Biotype Y, which can survive on the moderately resistant rice variety YHY15, and Biotype I, which can survive on the susceptible rice variety TN1. We performed protein quantitation using the isobaric tag for relative and absolute quantification (iTRAQ) and then compared the expression patterns between two virulent N. lugens populations and found 258 differentially expressed proteins (DEPs). We found that 151 of the DEPs were up-regulated, while 107 were down-regulated. We evaluated transcript levels of 8 expressed genes from the iTRAQ results by qRT-PCR, which revealed transcriptional changes that were consistent with the changes at the protein level. The determination of the protein changes in two virulent N. lugens populations would help to better understanding BPH adaptation to resistant rice varieties and facilitate the better design of new control strategies for host defense against BPH.
Collapse
Affiliation(s)
- Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- * E-mail:
| |
Collapse
|
20
|
Jaganathan D, Bohra A, Thudi M, Varshney RK. Fine mapping and gene cloning in the post-NGS era: advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1791-1810. [PMID: 32040676 PMCID: PMC7214393 DOI: 10.1007/s00122-020-03560-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/29/2020] [Indexed: 05/18/2023]
Abstract
Improvement in traits of agronomic importance is the top breeding priority of crop improvement programs. Majority of these agronomic traits show complex quantitative inheritance. Identification of quantitative trait loci (QTLs) followed by fine mapping QTLs and cloning of candidate genes/QTLs is central to trait analysis. Advances in genomic technologies revolutionized our understanding of genetics of complex traits, and genomic regions associated with traits were employed in marker-assisted breeding or cloning of QTLs/genes. Next-generation sequencing (NGS) technologies have enabled genome-wide methodologies for the development of ultra-high-density genetic linkage maps in different crops, thus allowing placement of candidate loci within few kbs in genomes. In this review, we compare the marker systems used for fine mapping and QTL cloning in the pre- and post-NGS era. We then discuss how different NGS platforms in combination with advanced experimental designs have improved trait analysis and fine mapping. We opine that efficient genotyping/sequencing assays may circumvent the need for cumbersome procedures that were earlier used for fine mapping. A deeper understanding of the trait architectures of agricultural significance will be crucial to accelerate crop improvement.
Collapse
Affiliation(s)
- Deepa Jaganathan
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University (TNAU), Coimbatore, India
| | - Abhishek Bohra
- Crop Improvement Division, ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Mahendar Thudi
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India.
| |
Collapse
|
21
|
Ling Y, Ang L, Weilin Z. Current understanding of the molecular players involved in resistance to rice planthoppers. PEST MANAGEMENT SCIENCE 2019; 75:2566-2574. [PMID: 31095858 DOI: 10.1002/ps.5487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Rice planthoppers are the most widespread and destructive pest of rice. Planthopper control depends greatly on the understanding of molecular players involved in resistance to planthoppers. This paper summarizes the recent progress in the understanding of some molecular players involved in resistance to planthoppers and the mechanisms involved. Recent researches showed that host-plant resistance is the most promising sustainable approach for controlling planthoppers. Planthopper-resistant varieties with a host-plant resistance gene have been released for rice products. Integrated planthopper management is a proposed strategy to prolong the durability of host-plant resistance. Bacillus spp. and their gene products or insect pathogenic fungi have great potential for application in the biological control of planthoppers. Enhancement of the activity of the natural enemies of planthoppers would be more cost-effective and environmentally friendly. Various molecular processes regulate rice-planthopper interactions. Rice encounters planthopper attacks via transcription factors, secondary metabolites, and signaling networks in which phytohormones have central roles. Maintenance of cell wall integrity and lignification act as physical barriers. Indirect defenses of rice are regulated via chemical elicitors, honeydew-associated elicitor, amendment with silicon and biochar, and salivary protein of BPH as elicitor or effector. Further research directions on planthopper control and rice defense against planthoppers are also put forward. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Ling
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
- Department of Environmental Engineering, Quzhou University, Quzhou, P.R. China
| | - Li Ang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhang Weilin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
22
|
Kamolsukyeunyong W, Ruengphayak S, Chumwong P, Kusumawati L, Chaichoompu E, Jamboonsri W, Saensuk C, Phoonsiri K, Toojinda T, Vanavichit A. Identification of spontaneous mutation for broad-spectrum brown planthopper resistance in a large, long-term fast neutron mutagenized rice population. RICE (NEW YORK, N.Y.) 2019; 12:16. [PMID: 30888525 PMCID: PMC6424995 DOI: 10.1186/s12284-019-0274-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/25/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND The development of rice varieties with broad-spectrum resistance to insect pests is the most promising approach for controlling a fast evolving insect pest such as the brown planthopper (BPH). To cope with rapid evolution, discovering new sources of broad-spectrum resistance genes is the ultimate goal. RESULTS We used a forward genetics approach to identify BPH resistance genes in rice (Oryza sativa L.) using double digest restriction site-associated DNA sequencing (ddRADseq) for quantitative trait loci (QTL)-seq of the backcross inbred lines (BILs) derived from a cross between the BPH-susceptible cultivar KDML105 and BPH-resistant cultivar Rathu Heenati (RH). Two major genomic regions, located between 5.78-7.78 Mb (QBPH4.1) and 15.22-17.22 Mb (QBPH4.2) on rice chromosome 4, showed association with BPH resistance in both pooled BILs and individual highly resistant and susceptible BILs. The two most significant candidate resistance genes located within the QBPH4.1 and QBPH4.2 windows were lectin receptor kinase 3 (OsLecRK3) and sesquiterpene synthase 2 (OsSTPS2), respectively. Functional markers identified in these two genes were used for reverse screening 9323 lines of the fast neutron (FN)-mutagenized population developed from the BPH-susceptible, purple-pigmented, indica cultivar Jao Hom Nin (JHN). Nineteen FN-mutagenized lines (0.24%) carried mutations in the OsLecRK3 and/or OsSTPS2 gene. Among these mutant lines, only one highly resistant line (JHN4) and three moderately resistant lines (JHN09962, JHN12005, and JHN19525) were identified using three active, local BPH populations. The 19 mutant lines together with three randomly selected mutant lines, which did not harbor mutations in the two target genes, were screened further for mutations in six known BPH resistance genes including BPH9, BPH14, BPH18, BPH26, BPH29, and BPH32. Multiple single nucleotide polymorphisms (SNPs) and insertion-deletion (Indel) mutations were identified, which formed gene-specific haplotype patterns (HPs) essential for broad-spectrum resistance to BPH in both BILs and JHN mutant populations. CONCLUSION On the one hand, HPs of OsLekRK2-3, OsSTPS2, and BPH32 determined broad-spectrum resistance to BPH among RH-derived BILs. On the other hand, in the JHN mutant population, BPH9 together with seven significant genes on chromosome 4 played a crucial role in BPH resistance.
Collapse
Affiliation(s)
- Wintai Kamolsukyeunyong
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani Thailand
| | - Siriphat Ruengphayak
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Pantharika Chumwong
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani Thailand
| | - Lucia Kusumawati
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani Thailand
| | - Ekawat Chaichoompu
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Interdisciplinary Graduate Program in Genetic Engineering and Bioinformatics, Kasetsart University, Chatuchak, Bangkok Thailand
| | - Watchareewan Jamboonsri
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani Thailand
| | - Chatree Saensuk
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Kunyakarn Phoonsiri
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| | - Theerayut Toojinda
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani Thailand
- Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani Thailand
| | - Apichart Vanavichit
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani Thailand
- Rice Science Center, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom, Thailand
- Agronomy Department, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom Thailand
| |
Collapse
|
23
|
Balachiranjeevi CH, Prahalada GD, Mahender A, Jamaloddin M, Sevilla MAL, Marfori-Nazarea CM, Vinarao R, Sushanto U, Baehaki SE, Li ZK, Ali J. Identification of a novel locus, BPH38(t), conferring resistance to brown planthopper ( Nilaparvata lugens Stal.) using early backcross population in rice ( Oryza sativa L.). EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2019; 215:185. [PMID: 31885402 PMCID: PMC6913135 DOI: 10.1007/s10681-019-2506-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/26/2019] [Indexed: 05/05/2023]
Abstract
Rice is the most important staple food crop, and it feeds more than half of the world population. Brown planthopper (BPH) is a major insect pest of rice that causes 20-80% yield loss through direct and indirect damage. The identification and use of BPH resistance genes can efficiently manage BPH. A molecular marker-based genetic analysis of BPH resistance was carried out using 101 BC1F5 mapping population derived from a cross between a BPH-resistant indica variety Khazar and an elite BPH-susceptible line Huang-Huan-Zhan. The genetic analysis indicated the existence of Mendelian segregation for BPH resistance. A total of 702 high-quality polymorphic single nucleotide polymorphism (SNP) markers, genotypic data, and precisely estimated BPH scores were used for molecular mapping, which resulted in the identification of the BPH38(t) locus on the long arm of chromosome 1 between SNP markers 693,369 and id 10,112,165 of 496.2 kb in size with LOD of 20.53 and phenotypic variation explained of 35.91%. A total of 71 candidate genes were predicted in the detected locus. Among these candidate genes, LOC_Os01g37260 was found to belong to the FBXL class of F-box protein possessing the LRR domain, which is reported to be involved in biotic stress resistance. Furthermore, background analysis and phenotypic selection resulted in the identification of introgression lines (ILs) possessing at least 90% recurrent parent genome recovery and showing superior performance for several agro-morphological traits. The BPH resistance locus and ILs identified in the present study will be useful in marker-assisted BPH resistance breeding programs.
Collapse
Affiliation(s)
- C. H. Balachiranjeevi
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - G. D. Prahalada
- Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - A. Mahender
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Md. Jamaloddin
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M. A. L. Sevilla
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - C. M. Marfori-Nazarea
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - R. Vinarao
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - U. Sushanto
- Indonesian Center for Rice Research, Sukamandi, Indonesia
| | - S. E. Baehaki
- Indonesian Center for Rice Research, Sukamandi, Indonesia
| | - Z. K. Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - J. Ali
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
24
|
Hu J, Chang X, Zou L, Tang W, Wu W. Identification and fine mapping of Bph33, a new brown planthopper resistance gene in rice (Oryza sativa L.). RICE (NEW YORK, N.Y.) 2018; 11:55. [PMID: 30291462 PMCID: PMC6173673 DOI: 10.1186/s12284-018-0249-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/26/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Host-plant resistance is the most desirable and economic way to overcome BPH damage to rice. As single-gene resistance is easily lost due to the evolution of new BPH biotypes, it is urgent to explore and identify new BPH resistance genes. RESULTS In this study, using F2:3 populations and near-isogenic lines (NILs) derived from crosses between two BPH-resistant Sri Lankan rice cultivars (KOLAYAL and POLIYAL) and a BPH-susceptible cultivar 9311, a new resistance gene Bph33 was fine mapped to a 60-kb region ranging 0.91-0.97 Mb on the short arm of chromosome 4 (4S), which was at least 4 Mb distant from those genes/QTLs (Bph12, Bph15, Bph3, Bph20, QBph4 and QBph4.2) reported before. Seven genes were predicted in this region. Based on sequence and expression analyses, a Leucine Rich Repeat (LRR) family gene (LOC_Os04g02520) was identified as the most possible candidate of Bph33. The gene exhibited continuous and stable resistance from seedling stage to tillering stage, showing both antixenosis and antibiosis effects on BPH. CONCLUSION The results of this study will facilitate map-based cloning and marker-assisted selection of the gene.
Collapse
Affiliation(s)
- Jie Hu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingyuan Chang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ling Zou
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiqi Tang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Key laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Weiren Wu
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Fujian Key laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
25
|
Hechanova SL, Prusty MR, Kim SR, Ballesfin L, Ramos J, Prahalada GD, Jena KK. Monosomic alien addition lines (MAALs) of Oryza rhizomatis in Oryza sativa: production, cytology, alien trait introgression, molecular analysis and breeding application. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2197-2211. [PMID: 30032316 DOI: 10.1007/s00122-018-3147-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/14/2018] [Indexed: 05/23/2023]
Abstract
Key message Development of MAALs and disomic introgression lines derived from the cross between O. sativa and O. rhizomatis to exploit and utilize the valuable traits for rice improvement. The CC genome wild species, Oryza rhizomatis, possesses valuable traits for rice improvement. Unlike other CC genome wild rice, O. rhizomatis is less studied and none of the research has focused on the utilization of this resource in rice breeding. The transfer of novel genes governing the valuable traits from O. rhizomatis is difficult due to high genome incompatibility with O. sativa. Here we report the development of backcross progenies and complete sets of monosomic alien addition lines (MAALs) for the first time from O. rhizomatis in O. sativa line IR31917-45-3-2. Autotetraploid IR31917-45-3-2 (4x = AAAA) was used to generate allotriploid F1, and the F1 plant was backcrossed to IR31917-45-3-2 (2x). Forty-seven BC1F1 and 73 BC2F1 plants were produced with chromosome numbers ranging from 24 to 33 (2x + 9) and 24 to 27 (2x + 3), respectively. A complete set of MAALs were identified by morphological, cytological and marker-based analysis. A total of 116 CC genome-specific InDel markers across the 12 chromosome of rice were used to detect O. rhizomatis chromosome segments in F1, BC1F1, BC2F2, MAALs and disomic introgression lines (DILs). Expressions of major phenotypic traits inherited from O. rhizomatis were observed in MAAL-derived DILs. Small chromosomal segments of O. rhizomatis for chromosomes 1, 2, 4, 5, 6, 7, 10 and 12 were detected in DILs, and some of the introgression lines showed insect resistance against brown planthopper and green leafhopper. These newly developed MAALs and DILs will be useful for gene mining and more precise faster transfer of favorable genes to improve rice cultivars.
Collapse
Affiliation(s)
- Sherry Lou Hechanova
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Manas R Prusty
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Sung-Ryul Kim
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - LaRue Ballesfin
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Joie Ramos
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - G D Prahalada
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Kshirod K Jena
- Novel Gene Resources Laboratory, Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines.
| |
Collapse
|
26
|
Mammadov J, Buyyarapu R, Guttikonda SK, Parliament K, Abdurakhmonov IY, Kumpatla SP. Wild Relatives of Maize, Rice, Cotton, and Soybean: Treasure Troves for Tolerance to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2018; 9:886. [PMID: 30002665 PMCID: PMC6032925 DOI: 10.3389/fpls.2018.00886] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 06/07/2018] [Indexed: 02/05/2023]
Abstract
Global food demand is expected to nearly double by 2050 due to an increase in the world's population. The Green Revolution has played a key role in the past century by increasing agricultural productivity worldwide, however, limited availability and continued depletion of natural resources such as arable land and water will continue to pose a serious challenge for global food security in the coming decades. High yielding varieties with proven tolerance to biotic and abiotic stresses, superior nutritional profiles, and the ability to adapt to the changing environment are needed for continued agricultural sustainability. The narrow genetic base of modern cultivars is becoming a major bottleneck for crop improvement efforts and, therefore, the use of crop wild relatives (CWRs) is a promising approach to enhance genetic diversity of cultivated crops. This article provides a review of the efforts to date on the exploration of CWRs as a source of tolerance to multiple biotic and abiotic stresses in four global crops of importance; maize, rice, cotton, and soybean. In addition to the overview of the repertoire and geographical spread of CWRs in each of the respective crops, we have provided a comprehensive discussion on the morphological and/or genetic basis of the traits along with some examples, when available, of the research in the transfer of traits from CWRs to cultivated varieties. The emergence of modern molecular and genomic technologies has not only accelerated the pace of dissecting the genetics underlying the traits found in CWRs, but also enabled rapid and efficient trait transfer and genome manipulation. The potential and promise of these technologies has also been highlighted in this review.
Collapse
Affiliation(s)
- Jafar Mammadov
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| | - Ramesh Buyyarapu
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| | - Satish K. Guttikonda
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| | - Kelly Parliament
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| | - Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Academy of Sciences of the Republic of Uzbekistan, Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Siva P. Kumpatla
- Agriculture Division of DowDuPont™, Corteva Agriscience™, Johnston, IA, United States
| |
Collapse
|
27
|
Gupta MK, Vadde R, Donde R, Gouda G, Kumar J, Nayak S, Jena M, Behera L. Insights into the structure–function relationship of brown plant hopper resistance protein, Bph14 of rice plant: a computational structural biology approach. J Biomol Struct Dyn 2018; 37:1649-1665. [PMID: 29633905 DOI: 10.1080/07391102.2018.1462737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Manoj Kumar Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University , Kadapa, India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University , Kadapa, India
| | - Ravindra Donde
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Gayatri Gouda
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Jitendra Kumar
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Subhashree Nayak
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Mayabini Jena
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| | - Lambodar Behera
- ICAR-National Rice Research Institute (Formerly CRRI) , Cuttack, India
| |
Collapse
|
28
|
Vanavichit A, Kamolsukyeunyong W, Siangliw M, Siangliw JL, Traprab S, Ruengphayak S, Chaichoompu E, Saensuk C, Phuvanartnarubal E, Toojinda T, Tragoonrung S. Thai Hom Mali Rice: Origin and Breeding for Subsistence Rainfed Lowland Rice System. RICE (NEW YORK, N.Y.) 2018; 11:20. [PMID: 29633040 PMCID: PMC5891439 DOI: 10.1186/s12284-018-0212-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 05/09/2023]
Abstract
The world-renowned Thai Hom Mali Rice has been the most important aromatic rice originating in Thailand. The aromatic variety was collected from Chachoengsao, a central province, and after pure-line selection, it was officially named as Khao Dawk Mali 105, (KDML105). Because of its superb fragrance and cooking quality, KDML105 has been a model variety for studying genes controlling grain quality and aroma. The aromatic gene was cloned in KDML105, as an amino aldehyde dehydrogenase (AMADH) or better known as BADH2 located on chromosome 8. Later on, all other aromatic rice genes were discovered as allelic to the AMADH. As a selection of local landrace variety found in rainfed areas, the Thai Jasmine rice showed adaptive advantages over improved irrigated rice in less fertile lowland rainfed conditions. Because KDML105 was susceptible to most diseases and insect pests, marker-assisted backcross selection (MABC) was used for the genetic improvement since 2000. After nearly 17 years of MABC for integrating new traits into KDML105, a new generation of KDML105, designated HM84, was developed which maintains the cooking quality and fragrance, and has gained advantages during flash flooding, disease, and insect outbreak.
Collapse
Affiliation(s)
- Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
- Agronomy Department, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
- Rice Gene Discovery Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
| | - Wintai Kamolsukyeunyong
- Rice Gene Discovery Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
| | - Meechai Siangliw
- Rice Gene Discovery Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
| | - Jonaliza L. Siangliw
- Rice Gene Discovery Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
| | - Suniyom Traprab
- Bureau of Rice Research and Development (Rice Department), 50 Paholyothin Rd, Chatuchak, Bangkok, 10900 Thailand
| | - Siriphat Ruengphayak
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
| | - Ekawat Chaichoompu
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
| | - Chatree Saensuk
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
| | | | - Theerayut Toojinda
- Rice Gene Discovery Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Kasetsart University, Kamphaeng Saen, Nakhon Pathom, 73140 Thailand
- Plant Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, 113 Thailand Science Park, Khlong Luang, Pathum Thani, 12120 Thailand
| | - Somvong Tragoonrung
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, 113 Thailand Science Park, Khlong Luang, Pathum Thani, 12120 Thailand
| |
Collapse
|