1
|
Sriram M, Manonmani S, Gopalakrishnan C, Sheela V, Shanmugam A, Revanna Swamy KM, Suresh R. Breeding for brown plant hopper resistance in rice: recent updates and future perspectives. Mol Biol Rep 2024; 51:1038. [PMID: 39365503 DOI: 10.1007/s11033-024-09966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Rice yield is often threatened by various stresses caused by biotic and abiotic agents. Many biotic stress factors are known to cause crop growth and yield from seedling to maturity. The brown plant hopper (BPH) can potentially reduce the rice yield to an extent of up to 80%. Intensive research efforts in 1972 led to a better understanding of pathogens/insect and host-plant resistance. This resulted in the identification of about 70 BPH-resistant genes and quantitative trait loci (QTLs) from diversified sources including wild germplasm. However, the BPH-resistant improved varieties with a single resistant gene lose the effectiveness of the gene because of the evolution of new biotypes. This review inferred that the level of resistance durable when incorporating multiple 'R' gene combinations when compared to a single gene. Breeding tools like wide hybridization, biparental crosses, marker-assisted introgression, pyramiding, and genetic engineering have been widely employed to breed rice varieties with single or combination of 'R' genes conferring durable resistance to BPH. Many other genes like receptor-like kinase genes, transcriptional factors, etc., were also found to be involved in the resistant mechanisms of 'R' genes. Due to this, the durability of the resistance can be improved and the level of resistance of the 'R' genes can be increased by adopting newer breeding tools like genome editing which hold promise to develop rice varieties with stable resistance.
Collapse
Affiliation(s)
- Muthukumarasamy Sriram
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Swaminathan Manonmani
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Chellapan Gopalakrishnan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Venugopal Sheela
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Aravindan Shanmugam
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641003, India
| | - K M Revanna Swamy
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Ramalingam Suresh
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
2
|
Dong M, Wu C, Lian L, Shi L, Xie Z, Zhang J, Jiang Z. A time-course transcriptomic analysis reveals the key responses of a resistant rice cultivar to brown planthopper infestation. Sci Rep 2024; 14:22455. [PMID: 39341852 PMCID: PMC11439038 DOI: 10.1038/s41598-024-73546-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
The brown planthopper (BPH) is one of the most problematic pests affecting rice (Oryza sativa L.) yields in Asia. Breeding rice varieties containing resistance genes is the most economical and effective means of controlling BPH. In this study, the key factors in resistance to BPH were investigated between the high-resistance rice variety "R26" and the susceptible variety "TN1" using RNA-sequencing. We identified 9527 differentially expressed genes (DEGs) between the rice varieties under BPH-induced stress. Weighted time-course gene co-expression network analysis (WGCNA) indicated that the increased expression of genes is associated with plant hormones, MAPK signaling pathway and biosynthesis of other secondary metabolites, which were involved in disease resistance. A connection network identified a hub gene, OsREM4.1 (BGIOSGA024059), that may affect rice resistance to the BPH. Knocking out OsREM4.1 in rice can lead to a decrease in callose, making it less resistant to BPH. Overall, the expression of differentially expressed genes varies among rice varieties with different resistance in BPH invasion. Inaddition, R26 enhances resistance to BPH by upregulating genes and secondary metabolites related to stress resistance and plant immunity. In summary, our study provides valuable insights into the genome-wide expression profile of DEGs in rice under BPH invasion through high-throughput sequencing, and further suggests that R26 can be used to develop high resistance rice lines in BPH resistant breeding programs.
Collapse
Affiliation(s)
- Meng Dong
- Rice Research Institute of Fujian Academy of Agricultural Sciences, Cangshan, Fuzhou, 350018, China
| | - Chunzhu Wu
- Rice Research Institute of Fujian Academy of Agricultural Sciences, Cangshan, Fuzhou, 350018, China
| | - Ling Lian
- Rice Research Institute of Fujian Academy of Agricultural Sciences, Cangshan, Fuzhou, 350018, China
| | - Longqing Shi
- Rice Research Institute of Fujian Academy of Agricultural Sciences, Cangshan, Fuzhou, 350018, China
| | - Zhenxing Xie
- Rice Research Institute of Fujian Academy of Agricultural Sciences, Cangshan, Fuzhou, 350018, China
| | - Junian Zhang
- Rice Research Institute of Fujian Academy of Agricultural Sciences, Cangshan, Fuzhou, 350018, China
| | - Zhaowei Jiang
- Rice Research Institute of Fujian Academy of Agricultural Sciences, Cangshan, Fuzhou, 350018, China.
| |
Collapse
|
3
|
Cheng X, Zhou G, Chen W, Tan L, Long Q, Cui F, Tan L, Zou G, Tan Y. Current status of molecular rice breeding for durable and broad-spectrum resistance to major diseases and insect pests. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:219. [PMID: 39254868 PMCID: PMC11387466 DOI: 10.1007/s00122-024-04729-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024]
Abstract
In the past century, there have been great achievements in identifying resistance (R) genes and quantitative trait loci (QTLs) as well as revealing the corresponding molecular mechanisms for resistance in rice to major diseases and insect pests. The introgression of R genes to develop resistant rice cultivars has become the most effective and eco-friendly method to control pathogens/insects at present. However, little attention has been paid to durable and broad-spectrum resistance, which determines the real applicability of R genes. Here, we summarize all the R genes and QTLs conferring durable and broad-spectrum resistance in rice to fungal blast, bacterial leaf blight (BLB), and the brown planthopper (BPH) in molecular breeding. We discuss the molecular mechanisms and feasible methods of improving durable and broad-spectrum resistance to blast, BLB, and BPH. We will particularly focus on pyramiding multiple R genes or QTLs as the most useful method to improve durability and broaden the disease/insect spectrum in practical breeding regardless of its uncertainty. We believe that this review provides useful information for scientists and breeders in rice breeding for multiple stress resistance in the future.
Collapse
Affiliation(s)
- Xiaoyan Cheng
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Guohua Zhou
- College of Life Sciences and Resources and Environment, Yichun University, Yichun, People's Republic of China
| | - Wei Chen
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China
| | - Lin Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Qishi Long
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Fusheng Cui
- Yichun Academy of Sciences (Jiangxi Selenium-Rich Industry Research Institute), Yichun, People's Republic of China
| | - Lei Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China
| | - Guoxing Zou
- National Engineering Research Center of Rice (Nanchang), Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, People's Republic of China.
| | - Yong Tan
- Jiangxi Tiandao Liangan Seed Industry Co., Ltd., 568 South Huancheng Rd., Yuanzhou Dist., Yichun, People's Republic of China.
- Jiangxi Super-Rice Research and Development Center, Jiangxi Provincial Key Laboratory of Rice Germplasm Innovation and Breeding, Jiangxi Academy of Agricultural Sciences, National Engineering Research Center for Rice, Nanchang, People's Republic of China.
| |
Collapse
|
4
|
Yu W, He J, Wu J, Xu Z, Lai F, Zhong X, Zhang M, Ji H, Fu Q, Zhou X, Peng Y. Resistance to Planthoppers and Southern Rice Black-Streaked Dwarf Virus in Rice Germplasms. PLANT DISEASE 2024; 108:2321-2329. [PMID: 38127636 DOI: 10.1094/pdis-10-23-2025-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The damage caused by the white-back planthopper (WBPH, Sogatella furcifera) and brown planthopper (BPH, Nilaparvata lugens), as well as southern rice black-streaked dwarf virus (SRBSDV), considerably decreases the grain yield of rice. Identification of rice germplasms with sufficient resistance to planthoppers and SRBSDV is essential to the breeding and deployment of resistant varieties and, hence, the control of the pests and disease. In this study, 318 rice accessions were evaluated for their reactions to the infestation of both BPH and WBPH at the seedling stage using the standard seed-box screening test method; insect quantification was further conducted at the end of the tillering and grain-filling stages in field trials. Accessions HN12-239 and HN12-328 were resistant to both BPH and WBPH at all tested stages. Field trials were conducted to identify resistance in the collection to SRBSDV based on the virus infection rate under artificial inoculation. Rathu Heenati (RHT) and HN12-239 were moderately resistant to SRBSDV. In addition, we found that WBPH did not penetrate stems with stylets but did do more probing bouts and xylem sap ingestion when feeding on HN12-239 than the susceptible control rice Taichung Native 1. The resistance of rice accessions HN12-239, HN12-328, and RHT to BPH, WBPH, and/or SRBSDV should be valuable to the development of resistant rice varieties.
Collapse
Affiliation(s)
- Wenjuan Yu
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Jiachun He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Jianxiang Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhi Xu
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Fengxiang Lai
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Xuelian Zhong
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Mei Zhang
- Plant Protection Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu, Sichuan 610041, China
| | - Hongli Ji
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Qiang Fu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yunliang Peng
- Ministry of Agriculture Key Laboratory of Integrated Management of Pests on Crops in Southwest China, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
5
|
Li F, Yan L, Shen J, Liao S, Ren X, Cheng L, li Y, Qiu Y. Fine mapping and breeding application of two brown planthopper resistance genes derived from landrace rice. PLoS One 2024; 19:e0297945. [PMID: 38625904 PMCID: PMC11020626 DOI: 10.1371/journal.pone.0297945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/16/2024] [Indexed: 04/18/2024] Open
Abstract
The Brown planthopper (Nilaparvata lugens Stål; BPH) is known to cause significant damage to rice crops in Asia, and the use of host-resistant varieties is an effective and environmentally friendly approach for controlling BPH. However, genes limited resistance genes that are used in insect-resistant rice breeding programs, and landrace rice varieties are materials resources that carry rich and versatile genes for BPH resistance. Two landrace indica rice accessions, CL45 and CL48, are highly resistant to BPH and show obvious antibiosis against BPH. A novel resistance locus linked to markers 12M16.983 and 12M19.042 was identified, mapped to chromosome 12 in CL45, and designated Bph46. It was finely mapped to an interval of 480 kb and Gene 3 may be the resistance gene. Another resistance locus linked to markers RM26567 and 11MA104 was identified and mapped to chromosome 11 in CL48 and designated qBph11.3 according to the nominating rule. It was finely mapped to an interval of 145 kb, and LOC_Os11g29090 and LOC_Os11g29110 may be the resistance genes. Moreover, two markers, 12M16.983 and 11MA104, were developed for CL45 and CL48, respectively, using marker-assisted selection (MAS) and were confirmed by backcrossing individuals and phenotypic detection. Interestingly, we found that the black glume color is closely linked to the BPH resistance gene in CL48 and can effectively assist in the identification of positive individuals for breeding. Finally, several near-isogenic lines with a 9311 or KW genetic background, as well as pyramid lines with two resistance parents, were developed using MAS and exhibited significantly high resistance against BPHs.
Collapse
Affiliation(s)
- Fahuo Li
- College of Agriculture, Guangxi Key Laboratory of Agro-environment and Agric-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Liuhui Yan
- College of Agriculture, Guangxi Key Laboratory of Agro-environment and Agric-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou, China
| | - Juan Shen
- College of Agriculture, Guangxi Key Laboratory of Agro-environment and Agric-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shuolei Liao
- College of Agriculture, Guangxi Key Laboratory of Agro-environment and Agric-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianrong Ren
- College of Agriculture, Guangxi Key Laboratory of Agro-environment and Agric-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ling Cheng
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Yong li
- College of Agriculture, Guangxi Key Laboratory of Agro-environment and Agric-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
| | - Yongfu Qiu
- College of Agriculture, Guangxi Key Laboratory of Agro-environment and Agric-Products Safety, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Crop Cultivation and Physiology, Education Department of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
6
|
Zhou C, Jiang W, Guo J, Zhu L, Liu L, Liu S, Chen R, Du B, Huang J. Genome-wide association study and genomic prediction for resistance to brown planthopper in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1373081. [PMID: 38576786 PMCID: PMC10991774 DOI: 10.3389/fpls.2024.1373081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
The brown planthopper (BPH) is the most destructive insect pest that threatens rice production globally. Developing rice varieties incorporating BPH-resistant genes has proven to be an effective control measure against BPH. In this study, we assessed the resistance of a core collection consisting of 502 rice germplasms by evaluating resistance scores, weight gain rates and honeydew excretions. A total of 117 rice varieties (23.31%) exhibited resistance to BPH. Genome-wide association studies (GWAS) were performed on both the entire panel of 502 rice varieties and its subspecies, and 6 loci were significantly associated with resistance scores (P value < 1.0e-8). Within these loci, we identified eight candidate genes encoding receptor-like protein kinase (RLK), nucleotide-binding and leucine-rich repeat (NB-LRR), or LRR proteins. Two loci had not been detected in previous study and were entirely novel. Furthermore, we evaluated the predictive ability of genomic selection for resistance to BPH. The results revealed that the highest prediction accuracy for BPH resistance reached 0.633. As expected, the prediction accuracy increased progressively with an increasing number of SNPs, and a total of 6.7K SNPs displayed comparable accuracy to 268K SNPs. Among various statistical models tested, the random forest model exhibited superior predictive accuracy. Moreover, increasing the size of training population improved prediction accuracy; however, there was no significant difference in prediction accuracy between a training population size of 737 and 1179. Additionally, when there existed close genetic relatedness between the training and validation populations, higher prediction accuracies were observed compared to scenarios when they were genetically distant. These findings provide valuable resistance candidate genes and germplasm resources and are crucial for the application of genomic selection for breeding durable BPH-resistant rice varieties.
Collapse
Affiliation(s)
- Cong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weihua Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lijiang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shengyi Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Huang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
7
|
Kamal MM, Nguyen CD, Sanada-Morimura S, Zheng SH, Fujita D. Development of pyramided lines carrying brown planthopper resistance genes in the genetic background of Indica Group rice ( Oryza sativa L.) variety 'IR64'. BREEDING SCIENCE 2023; 73:450-456. [PMID: 38737919 PMCID: PMC11082456 DOI: 10.1270/jsbbs.23028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 05/14/2024]
Abstract
The development of resistant rice (Oryza sativa L.) varieties is a key strategy for the eco-friendly control of brown planthopper (BPH: Nilaparvata lugens Stål). However, BPH outbreaks occur frequently owing to the evolution of virulent strains in the field and the rapid breakdown of monogenic resistance to BPH. Therefore, to enhance BPH resistance and gauge the effectiveness of gene pyramiding against strongly virulent BPH, we developed pyramided lines (PYLs) in the genetic background of 'IR64' carrying BPH resistance genes. We developed six IR64-PYLs (BPH3 + BPH17, BPH32 + BPH17, BPH32 + BPH20, BPH3 + BPH17-ptb, BPH20 + BPH3, and BPH17-ptb + BPH32) through marker-assisted selection. To assess the resistance of the IR64-PYLs, we conducted antibiosis test, honeydew test, and modified seedbox screening test (MSST) using strongly virulent BPH populations. The level of BPH resistance increased in all six IR64-PYLs compared to both 'IR64' and the corresponding NILs in MSST. Among them, IR64-BPH3 + BPH17 and IR64-BPH32 + BPH17 exhibited the highest resistance to BPH. However, the resistance level of most IR64-PYLs was not significantly higher than that of the corresponding NILs in antibiosis test. Thus, these PYLs could serve as a valuable resource for breeding programs aimed at improving resistance to virulent strains of BPH and enhancing their durability.
Collapse
Affiliation(s)
- Md. Mostofa Kamal
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Agrotechnology Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Cuong Dinh Nguyen
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Biotechnology Department, College of Food Industry, 101B Le Huu Trac Street, Son Tra District, Da Nang City 550000, Vietnam
| | - Sachiyo Sanada-Morimura
- Agro-Environment Research Division, Kyushu Okinawa Agricultural Research Center, NARO, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Shao-Hui Zheng
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Daisuke Fujita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|
8
|
Shi S, Wang H, Zha W, Wu Y, Liu K, Xu D, He G, Zhou L, You A. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers ( Nilaparvata lugens Stål). Int J Mol Sci 2023; 24:16959. [PMID: 38069282 PMCID: PMC10707318 DOI: 10.3390/ijms242316959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Huiying Wang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Deze Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
9
|
Srivastava A, Pusuluri M, Balakrishnan D, Vattikuti JL, Neelamraju S, Sundaram RM, Mangrauthia SK, Ram T. Identification and Functional Characterization of Two Major Loci Associated with Resistance against Brown Planthoppers ( Nilaparvata lugens (Stål)) Derived from Oryza nivara. Genes (Basel) 2023; 14:2066. [PMID: 38003009 PMCID: PMC10671472 DOI: 10.3390/genes14112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The brown planthopper (BPH) is a highly destructive pest of rice, causing significant economic losses in various regions of South and Southeast Asia. Researchers have made promising strides in developing resistance against BPH in rice. Introgression line RPBio4918-230S, derived from Oryza nivara, has shown consistent resistance to BPH at both the seedling and adult stages of rice plants. Segregation analysis has revealed that this resistance is governed by two recessive loci, known as bph39(t) and bph40(t), contributing to 21% and 22% of the phenotypic variance, respectively. We later mapped the genes using a backcross population derived from a cross between Swarna and RPBio4918-230S. We identified specific marker loci, namely RM8213, RM5953, and R4M17, on chromosome 4, flanking the bph39(t) and bph40(t) loci. Furthermore, quantitative expression analysis of candidate genes situated between the RM8213 and R4M17 markers was conducted. It was observed that eight genes exhibited up-regulation in RPBio4918-230S and down-regulation in Swarna after BPH infestation. One gene of particular interest, a serine/threonine-protein kinase receptor (STPKR), showed significant up-regulation in RPBio4918-230S. In-depth sequencing of the susceptible and resistant alleles of STPKR from Swarna and RPBio4918-230S, respectively, revealed numerous single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel) mutations, both in the coding and regulatory regions of the gene. Notably, six of these mutations resulted in amino acid substitutions in the coding region of STPKR (R5K, I38L, S120N, T319A, T320S, and F348S) when compared to Swarna and the reference sequence of Nipponbare. Further validation of these mutations in a set of highly resistant and susceptible backcross inbred lines confirmed the candidacy of the STPKR gene with respect to BPH resistance controlled by bph39(t) and bph40(t). Functional markers specific for STPKR have been developed and validated and can be used for accelerated transfer of the resistant locus to elite rice cultivars.
Collapse
Affiliation(s)
- Akanksha Srivastava
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | - Madhu Pusuluri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Divya Balakrishnan
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | - Jhansi Lakshmi Vattikuti
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | - Sarla Neelamraju
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | | | - Tilathoo Ram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| |
Collapse
|
10
|
Yang K, Liu H, Jiang W, Hu Y, Zhou Z, An X, Miao S, Qin Y, Du B, Zhu L, He G, Chen R. Large scale rice germplasm screening for identification of novel brown planthopper resistance sources. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:70. [PMID: 37649829 PMCID: PMC10462578 DOI: 10.1007/s11032-023-01416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Rice (Oryza sativa L.) is a staple food crop globally. Brown planthopper (Nilaparvata lugens Stål, BPH) is the most destructive insect that threatens rice production annually. More than 40 BPH resistance genes have been identified so far, which provide valuable gene resources for marker-assisted breeding against BPH. However, it is still urgent to evaluate rice germplasms and to explore more new wide-spectrum BPH resistance genes to combat newly occurring virulent BPH populations. To this end, 560 germplasm accessions were collected from the International Rice Research Institute (IRRI), and their resistance to current BPH population of China was examined. A total of 105 highly resistant materials were identified. Molecular screening of BPH resistance genes in these rice germplasms was conducted by developing specific functional molecular markers of eight cloned resistance genes. Twenty-three resistant germplasms were found to contain none of the 8 cloned BPH resistance genes. These accessions also exhibited a variety of resistance mechanisms as indicated by an improved insect weight gain (WG) method, suggesting the existence of new resistance genes. One new BPH resistance gene, Bph44(t), was identified in rice accession IRGC 15344 and preliminarily mapped to a 0-2 Mb region on chromosome 4. This study systematically sorted out the corresponding relationships between BPH resistance genes and germplasm resources using a functional molecular marker system. Newly explored resistant germplasms will provide valualble donors for the identification of new resistance genes and BPH resistance breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01416-x.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Hongmei Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Weihua Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yinxia Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zhiyang Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xin An
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Si Miao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yushi Qin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
11
|
Yan L, Luo T, Huang D, Wei M, Ma Z, Liu C, Qin Y, Zhou X, Lu Y, Li R, Qin G, Zhang Y. Recent Advances in Molecular Mechanism and Breeding Utilization of Brown Planthopper Resistance Genes in Rice: An Integrated Review. Int J Mol Sci 2023; 24:12061. [PMID: 37569437 PMCID: PMC10419156 DOI: 10.3390/ijms241512061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Over half of the world's population relies on rice as their staple food. The brown planthopper (Nilaparvata lugens Stål, BPH) is a significant insect pest that leads to global reductions in rice yields. Breeding rice varieties that are resistant to BPH has been acknowledged as the most cost-effective and efficient strategy to mitigate BPH infestation. Consequently, the exploration of BPH-resistant genes in rice and the development of resistant rice varieties have become focal points of interest and research for breeders. In this review, we summarized the latest advancements in the localization, cloning, molecular mechanisms, and breeding of BPH-resistant rice. Currently, a total of 70 BPH-resistant gene loci have been identified in rice, 64 out of 70 genes/QTLs were mapped on chromosomes 1, 2, 3, 4, 6, 8, 10, 11, and 12, respectively, with 17 of them successfully cloned. These genes primarily encode five types of proteins: lectin receptor kinase (LecRK), coiled-coil-nucleotide-binding-leucine-rich repeat (CC-NB-LRR), B3-DNA binding domain, leucine-rich repeat domain (LRD), and short consensus repeat (SCR). Through mediating plant hormone signaling, calcium ion signaling, protein kinase cascade activation of cell proliferation, transcription factors, and miRNA signaling pathways, these genes induce the deposition of callose and cell wall thickening in rice tissues, ultimately leading to the inhibition of BPH feeding and the formation of resistance mechanisms against BPH damage. Furthermore, we discussed the applications of these resistance genes in the genetic improvement and breeding of rice. Functional studies of these insect-resistant genes and the elucidation of their network mechanisms establish a strong theoretical foundation for investigating the interaction between rice and BPH. Furthermore, they provide ample genetic resources and technical support for achieving sustainable BPH control and developing innovative insect resistance strategies.
Collapse
Affiliation(s)
- Liuhui Yan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Dahui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Minyi Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Chi Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yuanyuan Qin
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiaolong Zhou
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yingping Lu
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Gang Qin
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yuexiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| |
Collapse
|
12
|
Qin Y, Zhao H, Han H, Zhu G, Wang Z, Li F. Chromosome-Level Genome Assembly and Population Genomic Analyses Reveal Geographic Variation and Population Genetic Structure of Prunus tenella. Int J Mol Sci 2023; 24:11735. [PMID: 37511492 PMCID: PMC10380494 DOI: 10.3390/ijms241411735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Prunus tenella is a rare and precious relict plant in China. It is an important genetic resource for almond improvement and an indispensable material in ecological protection and landscaping. However, the research into molecular breeding and genetic evolution has been severely restricted due to the lack of genome information. In this investigation, we created a chromosome-level genomic pattern of P. tenella, 231 Mb in length with a contig N50 of 18.1 Mb by Hi-C techniques and high-accuracy PacBio HiFi sequencing. The present assembly predicted 32,088 protein-coding genes, and an examination of the genome assembly indicated that 94.7% among all assembled transcripts were alignable to the genome assembly; most (97.24%) were functionally annotated. By phylogenomic genome comparison, we found that P. tenella is an ancient group that diverged approximately 13.4 million years ago (mya) from 13 additional closely related species and about 6.5 Mya from the cultivated almond. Collinearity analysis revealed that P. tenella is highly syntenic and has high sequence conservation with almond and peach. However, this species also exhibits many presence/absence variants. Moreover, a large inversion at the 7588 kb position of chromosome 5 was observed, which may have a significant association with phenotypic traits. Lastly, population genetic structure analysis in eight different populations indicated a high genetic differentiation among the natural distribution of P. tenella. This high-quality genome assembly provides critical clues and comprehensive information for the systematic evolution, genetic characteristics, and functional gene research of P. tenella. Moreover, it provides a valuable genomic resource for in-depth study in protection, developing, and utilizing P. tenella germplasm resources.
Collapse
Affiliation(s)
- Yue Qin
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Han Zhao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Hongwei Han
- Economic Forest Research Institute, Xinjiang Academy of Forestry, Urumqi 830000, China
| | - Gaopu Zhu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| | - Zhaoshan Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fangdong Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China
| |
Collapse
|
13
|
Zha W, Li C, Wu Y, Chen J, Li S, Sun M, Wu B, Shi S, Liu K, Xu H, Li P, Liu K, Yang G, Chen Z, Xu D, Zhou L, You A. Single-Cell RNA sequencing of leaf sheath cells reveals the mechanism of rice resistance to brown planthopper ( Nilaparvata lugens). FRONTIERS IN PLANT SCIENCE 2023; 14:1200014. [PMID: 37404541 PMCID: PMC10316026 DOI: 10.3389/fpls.2023.1200014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 07/06/2023]
Abstract
The brown planthopper (BPH) (Nilaparvata lugens) sucks rice sap causing leaves to turn yellow and wither, often leading to reduced or zero yields. Rice co-evolved to resist damage by BPH. However, the molecular mechanisms, including the cells and tissues, involved in the resistance are still rarely reported. Single-cell sequencing technology allows us to analyze different cell types involved in BPH resistance. Here, using single-cell sequencing technology, we compared the response offered by the leaf sheaths of the susceptible (TN1) and resistant (YHY15) rice varieties to BPH (48 hours after infestation). We found that the 14,699 and 16,237 cells (identified via transcriptomics) in TN1 and YHY15 could be annotated using cell-specific marker genes into nine cell-type clusters. The two rice varieties showed significant differences in cell types (such as mestome sheath cells, guard cells, mesophyll cells, xylem cells, bulliform cells, and phloem cells) in the rice resistance mechanism to BPH. Further analysis revealed that although mesophyll, xylem, and phloem cells are involved in the BPH resistance response, the molecular mechanism used by each cell type is different. Mesophyll cell may regulate the expression of genes related to vanillin, capsaicin, and ROS production, phloem cell may regulate the cell wall extension related genes, and xylem cell may be involved in BPH resistance response by controlling the expression of chitin and pectin related genes. Thus, rice resistance to BPH is a complicated process involving multiple insect resistance factors. The results presented here will significantly promote the investigation of the molecular mechanisms underlying the resistance of rice to insects and accelerate the breeding of insect-resistant rice varieties.
Collapse
Affiliation(s)
- Wenjun Zha
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Changyan Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yan Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Minshan Sun
- Henan Assist Research Biotechnology Co., Ltd., Zhengzhou, China
| | - Bian Wu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huashan Xu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Peide Li
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guocai Yang
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhijun Chen
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Deze Xu
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Lei Zhou
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Aiqing You
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
14
|
Xue Y, Muhammad S, Yang J, Wang X, Zhao N, Qin B, Qiu Y, Du Z, Ulhassan Z, Zhou W, Liu F, Li R. Comparative transcriptome-wide identification and differential expression of genes and lncRNAs in rice near-isogenic line (KW- Bph36-NIL) in response to BPH feeding. FRONTIERS IN PLANT SCIENCE 2023; 13:1095602. [PMID: 36874914 PMCID: PMC9981640 DOI: 10.3389/fpls.2022.1095602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Brown planthopper (BPH) is the most devastating pest of rice in Asia, causing substantial yield losses and has become a challenging task to be controlled under field conditions. Although extensive measures have been taken over the past decades, which resulted in the evolution of new resistant BPH strains. Therefore, besides other possible approaches, equipping host plants with resistant genes is the most effective and environment-friendly technique for BPH control. Here, we systematically analyzed transcriptome changes in the susceptible rice variety Kangwenqingzhan (KW) and the resistant near-isogenic line (NIL) KW-Bph36-NIL, through RNA-seq, depicting the differential expression profiles of mRNAs and long non-coding RNAs (lncRNAs) in rice before and after BPH feeding. We observed a proportion of genes (1.48%) and (2.74%) were altered in KW and NIL, respectively, indicating different responses of rice strains against BPH feeding. Nevertheless, we characterized 384 differentially expressed long non-coding RNAs (DELs) that can be impacted by the two strains by alternatively changing the expression patterns of the respective coding genes, suggesting their certain involvement in response to BPH feeding. In BPH invasion, KW and NIL responded differently by modifying the synthesis, storage, and transformation of intracellular substances, adjusting the nutrient accumulation and utilization inside and outside the cells. In addition, NIL expressed stronger resistance by acutely up-regulating genes and other transcription factors related to stress resistance and plant immunity. Altogether, our study elaborates valuable insights into the genome-wide DEGs and DELs expression profiles of rice under BPH invasion by high throughput sequencing and further suggests that NILs can be utilized in BPH resistance breeding programs in developing high-resistance rice lines.
Collapse
Affiliation(s)
- Yanxia Xue
- School of Electrical and Control Engineering, North University of China, Taiyuan, China
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Xuan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Yongfu Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Zhimin Du
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zaid Ulhassan
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Weijun Zhou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
15
|
Li CP, Wu DH, Huang SH, Meng M, Shih HT, Lai MH, Chen LJ, Jena KK, Hechanova SL, Ke TJ, Chiu TY, Tsai ZY, Chen GK, Tsai KC, Leu WM. The Bph45 Gene Confers Resistance against Brown Planthopper in Rice by Reducing the Production of Limonene. Int J Mol Sci 2023; 24:1798. [PMID: 36675314 PMCID: PMC9863282 DOI: 10.3390/ijms24021798] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Brown planthopper (BPH), a monophagous phloem feeder, consumes a large amount of photoassimilates in rice and causes wilting. A near-isogenic line ‘TNG71-Bph45’ was developed from the Oryza sativa japonica variety ‘Tainung 71 (TNG71) carrying a dominant BPH-resistance locus derived from Oryza nivara (IRGC 102165) near the centromere of chromosome 4. We compared the NIL (TNG71-Bph45) and the recurrent parent to explore how the Bph45 gene confers BPH resistance. We found that TNG71-Bph45 is less attractive to BPH at least partially because it produces less limonene. Chiral analysis revealed that the major form of limonene in both rice lines was the L-form. However, both L- and D-limonene attracted BPH when applied exogenously to TNG71-Bph45 rice. The transcript amounts of limonene synthase were significantly higher in TNG71 than in TNG71-Bph45 and were induced by BPH infestation only in the former. Introgression of the Bph45 gene into another japonica variety, Tainan 11, also resulted in a low limonene content. Moreover, several dominantly acting BPH resistance genes introduced into the BPH-sensitive IR24 line compromised its limonene-producing ability and concurrently decreased its attractiveness to BPH. These observations suggest that reducing limonene production may be a common resistance strategy against BPH in rice.
Collapse
Affiliation(s)
- Charng-Pei Li
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung 41362, Taiwan
| | - Dong-Hong Wu
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung 41362, Taiwan
| | - Shou-Horng Huang
- Department of Plant Protection, Chiayi Agricultural Experiment Station, Taiwan Agricultural Research Institute, Chiayi 60044, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hsien-Tzung Shih
- Applied Zoology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung, 41362, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agricultural Research Institute, Council of Agriculture, Taichung 41362, Taiwan
| | - Liang-Jwu Chen
- Institute of Molecular Biology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kshirod K. Jena
- Gene Identification and Validation (GIV) Laboratory, Rice Breeding Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Sherry Lou Hechanova
- Gene Identification and Validation (GIV) Laboratory, Rice Breeding Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila 1301, Philippines
| | - Ting-Jyun Ke
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Tai-Yuan Chiu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Zong-Yuan Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Guo-Kai Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Kuan-Chieh Tsai
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Wei-Ming Leu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
16
|
Zhao N, Yuan R, Usman B, Qin J, Yang J, Peng L, Mackon E, Liu F, Qin B, Li R. Detection of QTLs Regulating Six Agronomic Traits of Rice Based on Chromosome Segment Substitution Lines of Common Wild Rice ( Oryza rufipogon Griff.) and Mapping of qPH1.1 and qLMC6.1. Biomolecules 2022; 12:biom12121850. [PMID: 36551278 PMCID: PMC9775987 DOI: 10.3390/biom12121850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Wild rice is a primary source of genes that can be utilized to generate rice cultivars with advantageous traits. Chromosome segment substitution lines (CSSLs) are consisting of a set of consecutive and overlapping donor chromosome segments in a recipient's genetic background. CSSLs are an ideal genetic population for mapping quantitative traits loci (QTLs). In this study, 59 CSSLs from the common wild rice (Oryza rufipogon Griff.) accession DP15 under the indica rice cultivar (O. sativa L. ssp. indica) variety 93-11 background were constructed through multiple backcrosses and marker-assisted selection (MAS). Through high-throughput whole genome re-sequencing (WGRS) of parental lines, 12,565 mapped InDels were identified and designed for polymorphic molecular markers. The 59 CSSLs library covered 91.72% of the genome of common wild rice accession DP15. The DP15-CSSLs displayed variation in six economic traits including grain length (GL), grain width (GW), thousand-grain weight (TGW), grain length-width ratio (GLWR), plant height (PH), and leaf margin color (LMC), which were finally attributed to 22 QTLs. A homozygous CSSL line and a purple leave margin CSSL line were selected to construct two secondary genetic populations for the QTLs mapping. Thus, the PH-controlling QTL qPH1.1 was mapped to a region of 4.31-Mb on chromosome 1, and the LMC-controlling QTL qLMC6.1 was mapped to a region of 370-kb on chromosome 6. Taken together, these identified novel QTLs/genes from common wild rice can potentially promote theoretical knowledge and genetic applications to rice breeders worldwide.
Collapse
Affiliation(s)
- Neng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ruizhi Yuan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Babar Usman
- Graduate School of Green-Bio Science and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jiaming Qin
- Maize Research Institute, Guangxi Academy of Agricultural Science, Nanning 530007, China
| | - Jinlian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Liyun Peng
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Enerand Mackon
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|
17
|
Das PK, Panda G, Patra K, Jena N, Dash M. The role of polyplexes in developing a green sustainable approach in agriculture. RSC Adv 2022; 12:34463-34481. [PMID: 36545618 PMCID: PMC9709925 DOI: 10.1039/d2ra06541j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Rise in global population has increased the food demands and thus the competition among farmers to produce more and more. In the race to obtain higher productivity, farmers have resorted to injudicious farming practices that include the reckless use of nitrogenous fertilizers and intensive cropping on farmlands. Such practices have paved the path for large scale infestations of crops and plants by pests thus affecting the plant productivity and crop vigour. There are several traditional techniques to control pest infestations in plants such as the use of chemical or bio-pesticides, and integrated pest management practices which face several drawbacks. Delivery of gene/nucleic acid in plants through genetic engineering approaches is a more sustainable and effective method of protection against pests. The technology of RNA interference (RNAi) provides a sustainable solution to counter pest control problems faced by other traditional techniques. The RNAi technique involves delivery of dsDNA/dsRNA or other forms of nucleic acids into target organisms thereby bringing about gene silencing. However, RNAi is also limited to its use because of their susceptibility to degradation wherein the use of cationic polymers can provide a tangible solution. Cationic polymers form stable complexes with the nucleic acids known as "polyplexes", which may be attributed to their high positive charge densities thus protecting the exogenous nucleic acids from extracellular degradation. The current paper focuses on the utility of nucleic acids as a sustainable tool for pest control in crops and the use of cationic polymers for the efficient delivery of nucleic acids in pests thus protecting the plant from infestations.
Collapse
Affiliation(s)
| | | | | | - Nivedita Jena
- Institute of Life Sciences, DBT-ILSBhubaneswarOdishaIndia
| | - Mamoni Dash
- Institute of Life Sciences, DBT-ILSBhubaneswarOdishaIndia
| |
Collapse
|
18
|
Wani SH, Choudhary M, Barmukh R, Bagaria PK, Samantara K, Razzaq A, Jaba J, Ba MN, Varshney RK. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3875-3895. [PMID: 35267056 PMCID: PMC9729161 DOI: 10.1007/s00122-022-04060-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/11/2022] [Indexed: 05/03/2023]
Abstract
Improving crop resistance against insect pests is crucial for ensuring future food security. Integrating genomics with modern breeding methods holds enormous potential in dissecting the genetic architecture of this complex trait and accelerating crop improvement. Insect resistance in crops has been a major research objective in several crop improvement programs. However, the use of conventional breeding methods to develop high-yielding cultivars with sustainable and durable insect pest resistance has been largely unsuccessful. The use of molecular markers for identification and deployment of insect resistance quantitative trait loci (QTLs) can fastrack traditional breeding methods. Till date, several QTLs for insect pest resistance have been identified in field-grown crops, and a few of them have been cloned by positional cloning approaches. Genome editing technologies, such as CRISPR/Cas9, are paving the way to tailor insect pest resistance loci for designing crops for the future. Here, we provide an overview of diverse defense mechanisms exerted by plants in response to insect pest attack, and review recent advances in genomics research and genetic improvements for insect pest resistance in major field crops. Finally, we discuss the scope for genomic breeding strategies to develop more durable insect pest resistant crops.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, J&K, 192101, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pravin K Bagaria
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Jagdish Jaba
- Intergated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Malick Niango Ba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 12404, Niamey, Niger
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
19
|
Kaur P, Neelam K, Sarao PS, Babbar A, Kumar K, Vikal Y, Khanna R, Kaur R, Mangat GS, Singh K. Molecular mapping and transfer of a novel brown planthopper resistance gene bph42 from Oryza rufipogon (Griff.) To cultivated rice (Oryza sativa L.). Mol Biol Rep 2022; 49:8597-8606. [PMID: 35764746 DOI: 10.1007/s11033-022-07692-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Brown planthopper (BPH), Nilaparvata lugens (Stål), is one of the most destructive pests of rice accounting for 52% of annual yield loss. The breakdown of resistance against known BPH biotypes necessitates the identification and deployment of new genes from diverse sources. The current study aimed at mapping and transfer of a novel BPH resistance gene from the wild species of rice O. rufipogon accession CR100441 to the elite rice cultivar against BPH biotype 4. METHODS AND RESULTS The phenotypic screening against BPH biotype 4 was conducted using the standard seedbox screening technique (SSST). Inheritance study using damage score caused by BPH infestation at the seedling stage indicated the presence of a single major recessive gene with the segregation ratio of susceptible to resistant plants in 3:1 (210:66, χ2c = 0.17 ≤ χ20.05,1 = 3.84). The genotyping of the mapping population was done using polymorphic microsatellite markers between PR122 and O.rufipogon acc.CR100441 spanning all the 12 chromosomes of rice. A total of 537 SSR markers were used to map a BPH resistance gene (designated as bph42) on the short arm of chromosome 4 between RM16282 and RM6659. QTL analysis identified a peak marker RM16335 contributing 29% of the phenotypic variance at 40.76 LOD. CONCLUSIONS The identified marker co-segregates with the bph42 and hence could be efficiently used for marker-assisted selection (MAS) for the transfer of resistance into elite rice cultivars. The introgression lines with higher yield and BPH resistance were identified and are under advanced yield trails for further varietal release.
Collapse
Affiliation(s)
- Pavneet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Preetinder Singh Sarao
- Department of Genetics and Plant Breeding, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ankita Babbar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kishor Kumar
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
- Integrated Rural Development and Management Faculty Centre, Ramakrishna Mission Vivekananda Educational and Research Institute, 700103, Narendrapur, Kolkata, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Renu Khanna
- Department of Genetics and Plant Breeding, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Rupinder Kaur
- Department of Genetics and Plant Breeding, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gurjeet Singh Mangat
- Department of Genetics and Plant Breeding, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
20
|
Zha W, Li S, Xu H, Chen J, Liu K, Li P, Liu K, Yang G, Chen Z, Shi S, Zhou L, You A. Genome-wide identification of long non-coding (lncRNA) in Nilaparvata lugens's adaptability to resistant rice. PeerJ 2022; 10:e13587. [PMID: 35910769 PMCID: PMC9332332 DOI: 10.7717/peerj.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/24/2022] [Indexed: 01/22/2023] Open
Abstract
Background The brown planthopper (BPH), Nilaparvata lugens (Stål), is a very destructive pest that poses a major threat to rice plants worldwide. BPH and rice have developed complex feeding and defense strategies in the long-term co-evolution. Methods To explore the molecular mechanism of BPH's adaptation to resistant rice varieties, the lncRNA expression profiles of two virulent BPH populations were analyzed. The RNA-seq method was used to obtain the lncRNA expression data in TN1 and YHY15. Results In total, 3,112 highly reliable lncRNAs in TN1 and YHY15 were identified. Compared to the expression profiles between TN1 and YHY15, 157 differentially expressed lncRNAs, and 675 differentially expressed mRNAs were identified. Further analysis of the possible regulation relationships between differentially expressed lncRNAs and differentially expressed mRNAs, identified three pair antisense targets, nine pair cis-regulation targets, and 3,972 pair co-expressed targets. Function enriched found arginine and proline metabolism, glutathione metabolism, and carbon metabolism categories may significantly affect the adaptability in BPH when it is exposed to susceptible and resistant rice varieties. Altogether, it provided scientific data for the study of lncRNA regulation of brown planthopper resistance to rice. These results are helpful in the development of new control strategies for host defense against BPH and breeding rice for high yield.
Collapse
Affiliation(s)
- Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huashan Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Peide Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guocai Yang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhijun Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
21
|
Malik P, Huang M, Neelam K, Bhatia D, Kaur R, Yadav B, Singh J, Sneller C, Singh K. Genotyping-by-Sequencing Based Investigation of Population Structure and Genome Wide Association Studies for Seven Agronomically Important Traits in a Set of 346 Oryza rufipogon Accessions. RICE (NEW YORK, N.Y.) 2022; 15:37. [PMID: 35819660 PMCID: PMC9276952 DOI: 10.1186/s12284-022-00582-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Being one of the most important staple dietary constituents globally, genetic enhancement of cultivated rice for yield, agronomically important traits is of substantial importance. Even though the climatic factors and crop management practices impact complex traits like yield immensely, the contribution of variation by underlying genetic factors surpasses them all. Previous studies have highlighted the importance of utilizing exotic germplasm, landraces in enhancing the diversity of gene pool, leading to better selections and thus superior cultivars. Thus, to fully exploit the potential of progenitor of Asian cultivated rice for productivity related traits, genome wide association study (GWAS) for seven agronomically important traits was conducted on a panel of 346 O. rufipogon accessions using a set of 15,083 high-quality single nucleotide polymorphic markers. The phenotypic data analysis indicated large continuous variation for all the traits under study, with a significant negative correlation observed between grain parameters and agronomic parameters like plant height, culm thickness. The presence of 74.28% admixtures in the panel as revealed by investigating population structure indicated the panel to be very poorly genetically differentiated, with rapid LD decay. The genome-wide association analyses revealed a total of 47 strong MTAs with 19 SNPs located in/close to previously reported QTL/genic regions providing a positive analytic proof for our studies. The allelic differences of significant MTAs were found to be statistically significant at 34 genomic regions. A total of 51 O. rufipogon accessions harboured combination of superior alleles and thus serve as potential candidates for accelerating rice breeding programs. The present study identified 27 novel SNPs to be significantly associated with different traits. Allelic differences between cultivated and wild rice at significant MTAs determined superior alleles to be absent at 12 positions implying substantial scope of improvement by their targeted introgression into cultivars. Introgression of novel significant genomic regions into breeder's pool would broaden the genetic base of cultivated rice, thus making the crop more resilient.
Collapse
Affiliation(s)
- Palvi Malik
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, Wooster, USA
| | - Mao Huang
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, Wooster, USA
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ramanjeet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Bharat Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- Crop Pathology and Genetics Lab, University of British Columbia, Vancouver, Canada
| | - Jasdeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Clay Sneller
- Department of Horticulture and Crop Science, OARDC, The Ohio State University, Wooster, USA
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| |
Collapse
|
22
|
Zhou J, Yang Y, Lv Y, Pu Q, Li J, Zhang Y, Deng X, Wang M, Wang J, Tao D. Interspecific Hybridization Is an Important Driving Force for Origin and Diversification of Asian Cultivated Rice Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2022; 13:932737. [PMID: 35845644 PMCID: PMC9280345 DOI: 10.3389/fpls.2022.932737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
As one of the most important crops, Asian cultivated rice has evolved into a complex group including several subgroups adapting various eco-climate-systems around the globe. Here, we pictured a comprehensive view of its original domestication, divergences, and the origin of different subgroups by integrating agriculture, archeology, genetics, nuclear, and cytoplasm genome results. Then, it was highlighted that interspecific hybridization-introgression has played important role in improving the genetic diversity and adaptation of Oryza sativa during its evolution process. Natural hybridization-introgression led to the origin of indica, aus, and basmatic subgroups, which adapted to changing cultivated environments, and produced feral weedy rice coexisting and competing with cultivars under production management. Artificial interspecific hybridization-introgression gained several breakthroughs in rice breeding, such as developing three-line hybrid rice, new rice for Africa (NERICA), and some important pest and disease resistance genes in rice genetic improvement, contributing to the stable increase of rice production to meet the expanding human population. We proposed a series to exploit the virtues of hybridization-introgression in the genetic improvement of Asian cultivated rice. But some key issues such as reproductive barriers especially hybrid sterility should be investigated further, which are conducive to gene exchange between cultivated rice and its relatives, and even is beneficial to exploiting interspecific hybrid vigor. New technologies help introduce favorable genes from distant wild species to Asian cultivated rice, such as transgenic and genome editing systems. Rising introgression lines in a wider range with multi-donor benefits allele mining, understanding genetic network of rice growth and development, yield formation, and environmental adaptation. Then, integration of new tools and interspecific hybridization can be a future direction to develop more usable breeding populations which can make Asian cultivated rice more resilient to the changing climate and world.
Collapse
Affiliation(s)
- Jiawu Zhou
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ying Yang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yonggang Lv
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qiuhong Pu
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jing Li
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yu Zhang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xianneng Deng
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Min Wang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Jie Wang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Dayun Tao
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
23
|
Abdullah M, Okemo P, Furtado A, Henry R. Potential of Genome Editing to Capture Diversity From Australian Wild Rice Relatives. Front Genome Ed 2022; 4:875243. [PMID: 35572739 PMCID: PMC9091330 DOI: 10.3389/fgeed.2022.875243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Rice, a staple food worldwide and a model crop, could benefit from the introduction of novel genetics from wild relatives. Wild rice in the AA genome group closely related to domesticated rice is found across the tropical world. Due to their locality outside the range of domesticated rice, Australian wild rice populations are a potential source of unique traits for rice breeding. These rice species provide a diverse gene pool for improvement that could be utilized for desirable traits such as stress resistance, disease tolerance, and nutritional qualities. However, they remain poorly characterized. The CRISPR/Cas system has revolutionized gene editing and has improved our understanding of gene functions. Coupled with the increasing availability of genomic information on the species, genes in Australian wild rice could be modified through genome editing technologies to produce new domesticates. Alternatively, beneficial alleles from these rice species could be incorporated into cultivated rice to improve critical traits. Here, we summarize the beneficial traits in Australian wild rice, the available genomic information and the potential of gene editing to discover and understand the functions of novel alleles. Moreover, we discuss the potential domestication of these wild rice species for health and economic benefits to rice production globally.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
- ARC Centre for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, Australia
| | - Pauline Okemo
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
- ARC Centre for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, Australia
- ARC Centre for Plant Success in Nature and Agriculture, University of Queensland, Brisbane, QLD, Australia
- *Correspondence: Robert Henry,
| |
Collapse
|
24
|
Xiang Z, Chen Y, Chen Y, Zhang L, Liu M, Mao D, Chen L. Agrobacterium-Mediated High-Efficiency Genetic Transformation and Genome Editing of Chaling Common Wild Rice ( Oryza rufipogon Griff.) Using Scutellum Tissue of Embryos in Mature Seeds. FRONTIERS IN PLANT SCIENCE 2022; 13:849666. [PMID: 35401638 PMCID: PMC8988072 DOI: 10.3389/fpls.2022.849666] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/22/2022] [Indexed: 06/02/2023]
Abstract
Genetic transformation is an important strategy for revealing gene function, and it is used extensively in both functional genomics study and molecular breeding of rice. Demand for its application in wild Oryza species is rising for their extensive genetic diversity. However, genetic transformation of wild Oryza accessions with AA genome using calli induced from scutellum tissue of embryos in mature seeds has not been successfully established. In the present study, we used Chaling common wild rice (CLCWR) (Oryza rufipogon Griff.) with AA genome to successfully establish an Agrobacterium-mediated genetic transformation system based on scutellum tissue of embryos in mature seeds. The calli from embryos in mature seeds of CLCWR were easy to be induced and regenerated. The callus induction rate and texture were optimum under 2.5 mg/L 2,4-D. The optimal hormone combination used for regeneration was 2 mg/L ZT + 0.1 mg/L NAA. Studies on genetic transformation and genome editing showed that the transformation efficiency was 87-94%, the efficiency of single genome editing and multiplex genome editing were about 60-70% and 20-40%, respectively. Compared with Nipponbare (Nip), CLCWR had higher Hygromycin-resistant callus frequency and transformation efficiency. Taken together, our study establishes a highly efficient transformation system for common wild rice with AA genome and provides a good rice material for de novo domestication by genome editing in the future.
Collapse
|
25
|
Wu J, Zheng Y, Xu C, Jiao Q, Ye C, Chen T, Yu X, Pang K, Hao P. Rice Defense against Brown Planthopper Partially by Suppressing the Expression of Transferrin Family Genes of Brown Planthopper. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2839-2850. [PMID: 35226488 DOI: 10.1021/acs.jafc.1c07361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transferrins are multifunctional proteins, but their role in the interaction of rice and brown planthopper (BPH) remains unclear. In this study, the full-length cDNA of transferrin genes NlTsf1, NlTsf2, and NlTsf3 was cloned. Reverse transcription quantitative polymerase chain reaction showed that the expressions of NlTsf1 and NlTsf3 were significantly suppressed in BPH reared on the resistant rice R1 by 68.0 and 86.7%, respectively, compared with that on the susceptible S9. The survival rate decreased to 3.3% for dsNlTsf3-treated nymphs, to 58.9% for dsNlTsf1, and to 56.7% for dsNlTsf2 on day 11. RNAi of NlTsf3 against females largely reduced the number of eggs by 99.4%, and it decreased by 48.6% for dsNlTsf1 but did not significantly decrease for dsNlTsf2. Collectively, NlTsf1, NlTsf2, and NlTsf3 are essential for the survival and fecundity of BPH and are differentially involved in the interaction between rice and BPH. Therefore, NlTsf1 and NlTsf3 may be used as targets to control BPH.
Collapse
Affiliation(s)
- Jiangen Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuanyuan Zheng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chenxi Xu
- School of Food Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiqi Jiao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Chenglong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Tongtong Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
26
|
Highly adaptive
Phenuiviridae
with biomedical importance in multiple fields. J Med Virol 2022; 94:2388-2401. [DOI: 10.1002/jmv.27618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 01/21/2022] [Indexed: 11/07/2022]
|
27
|
Nguyen CD, Zheng SH, Sanada-Morimura S, Matsumura M, Yasui H, Fujita D. Substitution mapping and characterization of brown planthopper resistance genes from indica rice variety, 'PTB33' ( Oryza sativa L.). BREEDING SCIENCE 2021; 71:497-509. [PMID: 35087314 PMCID: PMC8784355 DOI: 10.1270/jsbbs.21034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/02/2021] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa L.) yield is severely reduced by the brown planthopper (BPH), Nilaparvata lugens Stål, in Asian countries. Increasing resistance in rice against BPH can mitigate yield loss. Previous reports indicated the presence of three BPH resistance genes, BPH2, BPH17-ptb, and BPH32, in durable resistant indica rice cultivar 'PTB33'. However, several important questions remain unclear; the genetic locations of BPH resistance genes on rice chromosomes and how these genes confer resistance, especially with relationship to three major categories of resistance mechanisms; antibiosis, antixenosis or tolerance. In this study, locations of BPH2, BPH17-ptb, and BPH32 were delimited using chromosome segment substitution lines derived from crosses between 'Taichung 65' and near-isogenic lines for BPH2 (BPH2-NIL), BPH17-ptb (BPH17-ptb-NIL), and BPH32 (BPH32-NIL). BPH2 was delimited as approximately 247.5 kbp between RM28449 and ID-161-2 on chromosome 12. BPH17-ptb and BPH32 were located between RM1305 and RM6156 on chromosome 4 and RM508 and RM19341 on chromosome 6, respectively. The antibiosis, antixenosis, and tolerance were estimated by several tests using BPH2-NIL, BPH17-ptb-NIL, and BPH32-NIL. BPH2 and BPH17-ptb showed resistance to antibiosis and antixenosis, while BPH17-ptb and BPH32 showed tolerance. These results contribute to the development of durable BPH resistance lines using three resistance genes from 'PTB33'.
Collapse
Affiliation(s)
- Cuong Dinh Nguyen
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Biotechnology Department, College of Food Industry, 101B Le Huu Trac Street, Son Tra District, Da Nang City 550000, Vietnam
| | - Shao-Hui Zheng
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Sachiyo Sanada-Morimura
- Agro-Enviroment Research Division, Kyushu Okinawa Agricultural Research Center, NARO, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Masaya Matsumura
- Division of Applied Entomology and Zoology, Central Region Agricultural Research Center, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daisuke Fujita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|
28
|
Ye C, Feng Y, Yu F, Jiao Q, Wu J, Ye Z, Zhang P, Sun C, Pang K, Hao P, Yu X. RNAi-mediated silencing of the autophagy-related gene NlATG3 inhibits survival and fecundity of the brown planthopper, Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2021; 77:4658-4668. [PMID: 34092014 DOI: 10.1002/ps.6507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/15/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The brown planthopper (BPH), Nilaparvata lugens, is a serious insect pest of rice. Autophagy and its related gene ATG3 play multiple roles in insects. However, information about the functions of ATG3 in BPH (NlATG3) is unavailable, and its potential as a target for pest control remains unclear. RESULTS RT-qPCR results showed a relatively low expression of NlATG3 in 1st-4th-instar nymphs, which increased through 9-day-old adults. The expression of NlATG3 increased continuously in 1-day-old through 5-day-old eggs, whereas it decreased thereafter. The mRNA level of NlATG3 was markedly higher in the ovary (1.16) and head (1.00) compared to the rest body parts of BPH adults. Injecting nymphs with dsNlATG3 at doses from 62.5 to 250 ng per insect had strong lethal effect upon them. For the 5th-instar nymphs, all individuals died within 5 days after receiving the dsNlATG3, and importantly, no individual successfully molted. Transmission electron microscopy revealed the new cuticle of nymphs injected with dsNlATG3 became loose and curved, which is clearly different from that of the control. Correspondingly, the obvious vesicles in epidermal cells disappeared after dsNlATG3-treatment. RNAi of NlATG3 significantly reduced the total number of eggs laid per female as well as the eggs' hatchability, especially in the dsNlATG3♀ × dsGFP♂ group, whose total number of eggs laid per female largely decreased by 80.4%, and whose eggs' hatchability was significantly reduced from 95.7% to zero, when compared with the control (dsGFP♀ × dsGFP♂). CONCLUSION NlATG3 is a promising target for developing RNAi-based insect management strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chenglong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Yalin Feng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Feifei Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Qiqi Jiao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Jiangen Wu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Pengjun Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kun Pang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Peiying Hao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
29
|
Naalden D, van Kleeff PJM, Dangol S, Mastop M, Corkill R, Hogenhout SA, Kant MR, Schuurink RC. Spotlight on the Roles of Whitefly Effectors in Insect-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:661141. [PMID: 34276723 PMCID: PMC8283192 DOI: 10.3389/fpls.2021.661141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 05/30/2023]
Abstract
The Bemisia tabaci species complex (whitefly) causes enormous agricultural losses. These phloem-feeding insects induce feeding damage and transmit a wide range of dangerous plant viruses. Whiteflies colonize a broad range of plant species that appear to be poorly defended against these insects. Substantial research has begun to unravel how phloem feeders modulate plant processes, such as defense pathways, and the central roles of effector proteins, which are deposited into the plant along with the saliva during feeding. Here, we review the current literature on whitefly effectors in light of what is known about the effectors of phloem-feeding insects in general. Further analysis of these effectors may improve our understanding of how these insects establish compatible interactions with plants, whereas the subsequent identification of plant defense processes could lead to improved crop resistance to insects. We focus on the core concepts that define the effectors of phloem-feeding insects, such as the criteria used to identify candidate effectors in sequence-mining pipelines and screens used to analyze the potential roles of these effectors and their targets in planta. We discuss aspects of whitefly effector research that require further exploration, including where effectors localize when injected into plant tissues, whether the effectors target plant processes beyond defense pathways, and the properties of effectors in other insect excretions such as honeydew. Finally, we provide an overview of open issues and how they might be addressed.
Collapse
Affiliation(s)
- Diana Naalden
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Paula J. M. van Kleeff
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Sarmina Dangol
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke Mastop
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Rebecca Corkill
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Saskia A. Hogenhout
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Robert C. Schuurink
- Green Life Sciences Research Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
30
|
Zheng X, Zhu L, He G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation. CURRENT OPINION IN INSECT SCIENCE 2021; 45:14-20. [PMID: 33227482 DOI: 10.1016/j.cois.2020.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The variability of brown planthopper (BPH) populations and diversity of the host rice germplasm provide an ideal model for exploring the genetic and molecular basis of insect-plant interactions. During the long-term evolutionary arms race, complicated feeding and defense strategies have developed in BPH and rice. Nine major BPH resistance genes have been cloned and the exploration of BPH resistance genes medicated mechanism against BPH shed a light on the molecular basis of the rice-BPH interaction. This short review provides an update on our current understanding of the genetic and molecular mechanism for rice resistance and BPH adaptation. Understanding the interactions between BPH and rice will provide novel insights for sustainable control of this pest.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Sani Haliru B, Rafii MY, Mazlan N, Ramlee SI, Muhammad I, Silas Akos I, Halidu J, Swaray S, Rini Bashir Y. Recent Strategies for Detection and Improvement of Brown Planthopper Resistance Genes in Rice: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1202. [PMID: 32937908 PMCID: PMC7569854 DOI: 10.3390/plants9091202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Brown planthopper (BPH; Nilaparvata lugens Stal) is considered the main rice insect pest in Asia. Several BPH-resistant varieties of rice have been bred previously and released for large-scale production in various rice-growing regions. However, the frequent surfacing of new BPH biotypes necessitates the evolution of new rice varieties that have a wide genetic base to overcome BPH attacks. Nowadays, with the introduction of molecular approaches in varietal development, it is possible to combine multiple genes from diverse sources into a single genetic background for durable resistance. At present, above 37 BPH-resistant genes/polygenes have been detected from wild species and indica varieties, which are situated on chromosomes 1, 3, 4, 6, 7, 8, 9, 10, 11 and 12. Five BPH gene clusters have been identified from chromosomes 3, 4, 6, and 12. In addition, eight BPH-resistant genes have been successfully cloned. It is hoped that many more resistance genes will be explored through screening of additional domesticated and undomesticated species in due course.
Collapse
Affiliation(s)
- Bello Sani Haliru
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
- Department of Crop Science, Usmanu Danfodiyo University, Sokoto P. M. B. 2346, Sokoto State, Nigeria
| | - Mohd Y. Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Norida Mazlan
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Shairul Izan Ramlee
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Isma’ila Muhammad
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Ibrahim Silas Akos
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Jamilu Halidu
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Senesie Swaray
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Yusuf Rini Bashir
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| |
Collapse
|
32
|
Zha W, You A. Comparative iTRAQ proteomic profiling of proteins associated with the adaptation of brown planthopper to moderately resistant vs. susceptible rice varieties. PLoS One 2020; 15:e0238549. [PMID: 32903256 PMCID: PMC7480849 DOI: 10.1371/journal.pone.0238549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
The brown planthopper (BPH), Nilaparvata lugens (Stål), is a destructive pest that poses a significant threat to rice plants worldwide. To explore how BPHs adapt to the resistant rice variety, we analyzed proteomics profiles of two virulent N. lugens populations. We focused on Biotype Y, which can survive on the moderately resistant rice variety YHY15, and Biotype I, which can survive on the susceptible rice variety TN1. We performed protein quantitation using the isobaric tag for relative and absolute quantification (iTRAQ) and then compared the expression patterns between two virulent N. lugens populations and found 258 differentially expressed proteins (DEPs). We found that 151 of the DEPs were up-regulated, while 107 were down-regulated. We evaluated transcript levels of 8 expressed genes from the iTRAQ results by qRT-PCR, which revealed transcriptional changes that were consistent with the changes at the protein level. The determination of the protein changes in two virulent N. lugens populations would help to better understanding BPH adaptation to resistant rice varieties and facilitate the better design of new control strategies for host defense against BPH.
Collapse
Affiliation(s)
- Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- * E-mail:
| |
Collapse
|
33
|
Li Y, Mo Y, Li Z, Yang M, Tang L, Cheng L, Qiu Y. Characterization and application of a gall midge resistance gene (Gm6) from Oryza sativa 'Kangwenqingzhan'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:579-591. [PMID: 31745579 DOI: 10.1007/s00122-019-03488-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The resistance gene Gm6 was mapped and characterized using near-isogenic and pyramided lines, followed by marker-assisted selection to develop lines with resistance to both gall midge and brown planthopper. The Asian rice gall midge (GM; Orseolia oryzae; Diptera: Cecidomyiidae) is a major destructive pest affecting rice cultivation regions. The characterization of GM-resistance genes and the breeding of resistant varieties are together considered the most efficient strategy for managing this insect. Here, the Gm6 resistance gene derived from the Kangwenqingzhan (KW) variety was found to be located on the long arm of chromosome 4 using the F2 population of 9311/KW. The region was narrowed to a 90-kb segment flanked by the markers YW91 and YW3-4 using backcrossing populations. Based on no-choice feeding and host choice tests, GM development and growth in near-isogenic lines (NILs) were severely restricted compared to that in the 9311 control. On day 8, the average GM body length was 0.69 mm and 0.56 mm on NILs and 9311, respectively, and the differences were more significant at later time points. However, GM insects exhibited no host preference between NILs and 9311, and there was normal egg hatching on the resistant plants. We developed pyramided lines carrying BPH27, BPH36, and Gm6 by crossing and backcrossing with marker-assisted selection. These lines were similar to the KW parent in terms of agronomic traits while also exhibiting high resistance to brown planthopper (BPH) and GM. The present mapping and characterization of Gm6 will facilitate map-based cloning of this important resistance gene and its application in the breeding of insect-resistant rice varieties.
Collapse
Affiliation(s)
- Yang Li
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yi Mo
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Zhihua Li
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Meng Yang
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Lihua Tang
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Ling Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yongfu Qiu
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
34
|
Uawisetwathana U, Chevallier OP, Xu Y, Kamolsukyeunyong W, Nookaew I, Somboon T, Toojinda T, Vanavichit A, Goodacre R, Elliott CT, Karoonuthaisiri N. Global metabolite profiles of rice brown planthopper-resistant traits reveal potential secondary metabolites for both constitutive and inducible defenses. Metabolomics 2019; 15:151. [PMID: 31741127 DOI: 10.1007/s11306-019-1616-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/11/2019] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Brown planthopper (BPH) is a phloem feeding insect that causes annual disease outbreaks, called hopper burn in many countries throughout Asia, resulting in severe damage to rice production. Currently, mechanistic understanding of BPH resistance in rice plant is limited, which has caused slow progression on developing effective rice varieties as well as effective farming practices against BPH infestation. OBJECTIVE To reveal rice metabolic responses during 8 days of BPH attack, this study examined polar metabolome extracts of BPH-susceptible (KD) and its BPH-resistant isogenic line (IL308) rice leaves. METHODS Ultra high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QToF-MS) was combined with multi-block PCA to analyze potential metabolites in response to BPH attack. RESULTS This multivariate statistical model revealed different metabolic response patterns between the BPH-susceptible and BPH-resistant varieties during BPH infestation. The metabolite responses of the resistant IL308 variety occurred on Day 1, which was significantly earlier than those of the susceptible KD variety which showed an induced response by Days 4 and 8. BPH infestation caused metabolic perturbations in purine, phenylpropanoid, flavonoid, and terpenoid pathways. While found in both susceptible and resistant rice varieties, schaftoside (1.8 fold), iso-schaftoside (1.7 fold), rhoifolin (3.4 fold) and apigenin 6-C-α-L-arabinoside-8-C-β-L-arabinoside levels (1.6 fold) were significantly increased in the resistant variety by Day 1 post-infestation. 20-hydroxyecdysone acetate (2.5 fold) and dicaffeoylquinic acid (4.7 fold) levels were considerably higher in the resistant rice variety than those in the susceptible variety, both before and after infestation, suggesting that these secondary metabolites play important roles in inducible and constitutive defenses against the BPH infestation. CONCLUSIONS These potential secondary metabolites will be useful as metabolite markers and/or bioactive compounds for effective and durable approaches to address the BPH problem.
Collapse
Affiliation(s)
- Umaporn Uawisetwathana
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand.
| | - Olivier P Chevallier
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Yun Xu
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Wintai Kamolsukyeunyong
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Intawat Nookaew
- College of Medicine, Department Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Thapakorn Somboon
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| | - Theerayut Toojinda
- Rice Gene Discovery and Utilization Laboratory, Innovative Plant Biotechnology and Precision Agriculture Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- Integrative Crop Biotechnology and Management Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Apichart Vanavichit
- Agronomy Department, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Royston Goodacre
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, Northern Ireland, UK
| | - Nitsara Karoonuthaisiri
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Nueng, Khlong Luang, Pathumthani, 12120, Thailand
| |
Collapse
|
35
|
Yang M, Cheng L, Yan L, Shu W, Wang X, Qiu Y. Mapping and characterization of a quantitative trait locus resistance to the brown planthopper in the rice variety IR64. Hereditas 2019; 156:22. [PMID: 31297040 PMCID: PMC6595561 DOI: 10.1186/s41065-019-0098-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 06/19/2019] [Indexed: 01/15/2023] Open
Abstract
Background Rice planthoppers (main brown planthopper, Nilaparvata lugens Stål; BPH) was one of substantial threats to Asia rice production as its serious destruction and difficulties in control under field conditions. Notably, host-plant resistance was proved to be one of the effective ways to manage the pest. And stronger virulence will probably emergence when continuous use of insecticides. Therefore, more resistance genes with different resistance mechanisms were needed to be detected and then applied in the rice breeding practice. Results Resistance genes in the rice variety IR64 were evaluated considering the seedling bulk test and seedling survival rate. As a result, a locus with a large LOD score of 7.23 was found between markers RM302 and YM35 on chromosome 1. The locus explained 36.9% of phenotypic variation and was tentatively denominated Bph37. Moreover, Bph1 was detected to be harbored by the markers RM28366 and RM463, and had the largest LOD score of 2.08, explaining 7.7% of phenotypic variance in the same mapping population. Finally, the preliminary-near-isogenic-lines (pre-NILs) carrying Bph37 exhibited significant tolerance to the insects. But no antibiotic or antixenotic effects were observed in the resistant plants when infested with the insects. Conclusions We mapped one major BPH resistance gene Bph37 in consideration of seedling survival rate and the resistance lines showed tolerance to BPH. The detected gene should be beneficial for understanding the resistance mechanism of rice to BPH and for insect-resistance rice breeding programs.
Collapse
Affiliation(s)
- Meng Yang
- 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005 China.,2Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Ling Cheng
- 3College of Agriculture, Yangtze University, Jingzhou, 434025 China
| | - Liuhui Yan
- 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005 China
| | - Wan Shu
- 2Maize Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007 China
| | - Xinyi Wang
- 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005 China
| | - Yongfu Qiu
- 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005 China
| |
Collapse
|
36
|
Balachiranjeevi CH, Prahalada GD, Mahender A, Jamaloddin M, Sevilla MAL, Marfori-Nazarea CM, Vinarao R, Sushanto U, Baehaki SE, Li ZK, Ali J. Identification of a novel locus, BPH38(t), conferring resistance to brown planthopper ( Nilaparvata lugens Stal.) using early backcross population in rice ( Oryza sativa L.). EUPHYTICA: NETHERLANDS JOURNAL OF PLANT BREEDING 2019; 215:185. [PMID: 31885402 PMCID: PMC6913135 DOI: 10.1007/s10681-019-2506-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/26/2019] [Indexed: 05/05/2023]
Abstract
Rice is the most important staple food crop, and it feeds more than half of the world population. Brown planthopper (BPH) is a major insect pest of rice that causes 20-80% yield loss through direct and indirect damage. The identification and use of BPH resistance genes can efficiently manage BPH. A molecular marker-based genetic analysis of BPH resistance was carried out using 101 BC1F5 mapping population derived from a cross between a BPH-resistant indica variety Khazar and an elite BPH-susceptible line Huang-Huan-Zhan. The genetic analysis indicated the existence of Mendelian segregation for BPH resistance. A total of 702 high-quality polymorphic single nucleotide polymorphism (SNP) markers, genotypic data, and precisely estimated BPH scores were used for molecular mapping, which resulted in the identification of the BPH38(t) locus on the long arm of chromosome 1 between SNP markers 693,369 and id 10,112,165 of 496.2 kb in size with LOD of 20.53 and phenotypic variation explained of 35.91%. A total of 71 candidate genes were predicted in the detected locus. Among these candidate genes, LOC_Os01g37260 was found to belong to the FBXL class of F-box protein possessing the LRR domain, which is reported to be involved in biotic stress resistance. Furthermore, background analysis and phenotypic selection resulted in the identification of introgression lines (ILs) possessing at least 90% recurrent parent genome recovery and showing superior performance for several agro-morphological traits. The BPH resistance locus and ILs identified in the present study will be useful in marker-assisted BPH resistance breeding programs.
Collapse
Affiliation(s)
- C. H. Balachiranjeevi
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - G. D. Prahalada
- Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - A. Mahender
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Md. Jamaloddin
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M. A. L. Sevilla
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - C. M. Marfori-Nazarea
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - R. Vinarao
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - U. Sushanto
- Indonesian Center for Rice Research, Sukamandi, Indonesia
| | - S. E. Baehaki
- Indonesian Center for Rice Research, Sukamandi, Indonesia
| | - Z. K. Li
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - J. Ali
- Rice Breeding Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|