1
|
Zhu X, Wang M, Huang Z, Chen M, Xu P, Liao S, Gao Y, Zhao Y, Chen H, He J, Luo Y, Wei X, Zhu L, Liu C, Huang J, Zhao X, Zhao J, Zhang Z, Zhuang C, Liu Z, Zhou H. The OsMYC2-JA feedback loop regulates diurnal flower-opening time via cell wall loosening in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2585-2598. [PMID: 38972041 DOI: 10.1111/tpj.16910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Diurnal flower-opening time (DFOT), the time of spikelet opening during the day, is an important trait for hybrid rice (Oryza sativa L.) seed production. Hybrids between indica and japonica rice varieties have strong heterosis, but the parental lines usually have different, nonoverlapping DFOTs. This reduces the success of hybrid seed production in crosses between indica and japonica subspecies, thus hindering the utilization of indica and japonica inter-subspecies heterosis. However, little is known about the molecular mechanisms regulating DFOT in rice. Here, we obtained japonica rice lines with a DFOT 1.5 h earlier than the wild type by overexpressing OsMYC2, a gene encoding a key transcription factor in the jasmonate (JA) signaling pathway. OsMYC2 is activated by JA signaling and directly regulates the transcription of genes related to JA biosynthesis and cell wall metabolism. Overexpressing OsMYC2 led to significantly increased JA contents and decreased cellulose and hemicellulose contents in lodicule cells, as well as the softening of lodicule cell walls. This may facilitate the swelling of lodicules, resulting in early diurnal flower-opening. These results suggest that the OsMYC2-JA feedback loop regulates DFOT in rice via cell wall remodeling. These findings shed light on the understanding of regulatory mechanism of the DFOT of plants, which should promote the development of indica and japonica varieties suitable for hybrid rice breeding.
Collapse
Affiliation(s)
- Xiaopei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Shitang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yannan Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yongzhen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Huixuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiahui He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yutong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoying Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liya Zhu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Chuanhe Liu
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Jilei Huang
- Instrumental Analysis and Research Center of South China Agricultural University, Guangzhou, 510642, China
| | - Xinhui Zhao
- Yahua Seeds Science Academy of Hunan, Changsha, 410119, China
| | - Junliang Zhao
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zemin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
2
|
Wang M, Zhu X, Huang Z, Chen M, Xu P, Liao S, Zhao Y, Gao Y, He J, Luo Y, Chen H, Wei X, Nie S, Dong J, Zhu L, Zhuang C, Zhao J, Liu Z, Zhou H. Controlling diurnal flower-opening time by manipulating the jasmonate pathway accelerates development of indica-japonica hybrid rice breeding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2267-2281. [PMID: 38526838 PMCID: PMC11258973 DOI: 10.1111/pbi.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/21/2024] [Accepted: 03/08/2024] [Indexed: 03/27/2024]
Abstract
Inter-subspecific indica-japonica hybrid rice (Oryza sativa) has the potential for increased yields over traditional indica intra-subspecies hybrid rice, but limited yield of F1 hybrid seed production (FHSP) hinders the development of indica-japonica hybrid rice breeding. Diurnal flower-opening time (DFOT) divergence between indica and japonica rice has been a major contributing factor to this issue, but few DFOT genes have been cloned. Here, we found that manipulating the expression of jasmonate (JA) pathway genes can effectively modulate DFOT to improve the yield of FHSP in rice. Treating japonica cultivar Zhonghua 11 (ZH11) with methyl jasmonate (MeJA) substantially advanced DFOT. Furthermore, overexpressing the JA biosynthesis gene OPDA REDUCTASE 7 (OsOPR7) and knocking out the JA inactivation gene CHILLING TOLERANCE 1 (OsHAN1) in ZH11 advanced DFOT by 1- and 2-h respectively; and knockout of the JA signal suppressor genes JASMONATE ZIM-DOMAIN PROTEIN 7 (OsJAZ7) and OsJAZ9 resulted in 50-min and 1.5-h earlier DFOT respectively. The yields of FHSP using japonica male-sterile lines GAZS with manipulated JA pathway genes were significantly higher than that of GAZS wildtype. Transcriptome analysis, cytological observations, measurements of elastic modulus and determination of cell wall components indicated that the JA pathway could affect the loosening of the lodicule cell walls by regulating their composition through controlling sugar metabolism, which in turn influences DFOT. This research has vital implications for breeding japonica rice cultivars with early DFOT to facilitate indica-japonica hybrid rice breeding.
Collapse
Affiliation(s)
- Mumei Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern RegionShaoguan UniversityShaoguanChina
| | - Xiaopei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Minghao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Peng Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shitang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yongzhen Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yannan Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yutong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Huixuan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xiaoying Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Shuai Nie
- Rice Research InstituteGuangdong Academy of Agricultural Sciences & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Jingfang Dong
- Rice Research InstituteGuangdong Academy of Agricultural Sciences & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Liya Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Junliang Zhao
- Rice Research InstituteGuangdong Academy of Agricultural Sciences & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesGuangdong Laboratory for Lingnan Modern AgricultureKey Laboratory for Enhancing Resource Use Efficiency of Crops in South ChinaMinistry of Agriculture and Rural AffairsCollege of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
3
|
Ashraf H, Ghouri F, Baloch FS, Nadeem MA, Fu X, Shahid MQ. Hybrid Rice Production: A Worldwide Review of Floral Traits and Breeding Technology, with Special Emphasis on China. PLANTS (BASEL, SWITZERLAND) 2024; 13:578. [PMID: 38475425 DOI: 10.3390/plants13050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
Rice is an important diet source for the majority of the world's population, and meeting the growing need for rice requires significant improvements at the production level. Hybrid rice production has been a significant breakthrough in this regard, and the floral traits play a major role in the development of hybrid rice. In grass species, rice has structural units called florets and spikelets and contains different floret organs such as lemma, palea, style length, anther, and stigma exsertion. These floral organs are crucial in enhancing rice production and uplifting rice cultivation at a broader level. Recent advances in breeding techniques also provide knowledge about different floral organs and how they can be improved by using biotechnological techniques for better production of rice. The rice flower holds immense significance and is the primary focal point for researchers working on rice molecular biology. Furthermore, the unique genetics of rice play a significant role in maintaining its floral structure. However, to improve rice varieties further, we need to identify the genomic regions through mapping of QTLs (quantitative trait loci) or by using GWAS (genome-wide association studies) and their validation should be performed by developing user-friendly molecular markers, such as Kompetitive allele-specific PCR (KASP). This review outlines the role of different floral traits and the benefits of using modern biotechnological approaches to improve hybrid rice production. It focuses on how floral traits are interrelated and their possible contribution to hybrid rice production to satisfy future rice demand. We discuss the significance of different floral traits, techniques, and breeding approaches in hybrid rice production. We provide a historical perspective of hybrid rice production and its current status and outline the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Mersin 33100, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Maiti S, Banik A. Strategies to fortify the nutritional values of polished rice by implanting selective traits from brown rice: A nutrigenomics-based approach. Food Res Int 2023; 173:113271. [PMID: 37803581 DOI: 10.1016/j.foodres.2023.113271] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 10/08/2023]
Abstract
Whole-grain cereals are important components of a healthy diet. It reduces the risk of many deadly diseases like cardiovascular diseases, diabetes, cancer, etc. Brown rice is an example of whole grain food, which is highly nutritious due to the presence of various bioactive compounds (flavonoids, phenolics, vitamins, phytosterols, oils, etc.) associated with the rice bran layer of brown rice. White rice is devoid of the nutritious rice bran layer and thus lacks the bioactive compounds which are the major attractants of brown rice. Therefore, to confer health benefits to the public at large, the nutrigenomic potential of white rice may be improved by integrating the phytochemicals associated with the rice bran layer of brown rice into it via biofortification processes like conventional breeding, agronomic practices, metabolic engineering, CRISPR/Cas9 technology, and RNAi techniques. Thus, this review article focuses on improving the nutritional qualities of white/polished rice through biofortification processes, utilizing new breeding technologies (NBTs).
Collapse
Affiliation(s)
- Somdatta Maiti
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Avishek Banik
- Laboratory of Microbial Interaction, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
5
|
Cai W, Li W, Duan L, Chen Y, Zhang F, Hu B, Xie J. Genetic Analysis of Novel Fertility Restoration Genes ( qRf3 and qRf6) in Dongxiang Wild Rice Using GradedPool-Seq Mapping and QTL-Seq Correlation Analysis. Int J Mol Sci 2023; 24:14832. [PMID: 37834281 PMCID: PMC10573815 DOI: 10.3390/ijms241914832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The improvement of grain yield, quality, and resistance can be achieved through the utilization of heterosis. The combination of cytoplasmic male sterility (CMS) and fertility restoration (Rf) gene(s) greatly facilitates the commercial development of three-line hybrid rice based on heterosis. The basis for investigating the relationship between CMS and Rf genes lies in the rapid localization of wild rice fertility restoration genes. A set of the BC4F5 population derived from interspecific crosses between Xieqingzao B (XB) and the BC1F9 XB//Dongxiang wild rice (DWR)/XB line L5339 was used to detect quantitative trait loci (QTL) for fertility restoration. The population was then crossed with two male sterile lines, Zhong9A (Z9A) and DongB11A (DB11A), in order to generate a testcrossing population for investigating spikelet fertility. Based on the linkage mapping, seven QTLs were detected on chromosomes 1, 3, 5, 6, 8, and 10, explaining 2.76 to 12.46% of the phenotypic variation. Of them, two novel fertility restoration QTLs, qRf3 and qRf6, can restore fertility of the CMS-DWR line DB11A by 16.56% and 15.12%, respectively. By employing joint QTL-seq and GradedPool-Seq methods, two novel Rf QTLs for DB11A, qRf3 and qRf6, were identified at the physical locations of 10,900,001-11,700,000 bp and 28,016,785-31,247,556 bp, respectively. These findings are useful for exploring the natural variations of Rf genes in rice. Therefore, rice's new genetic resources for the selection and breeding of rice restorer lines provide promising candidates for QTL fine localization and clarification.
Collapse
Affiliation(s)
- Wenshan Cai
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang 330200, China; (W.C.); (W.L.); (L.D.); (Y.C.); (F.Z.)
| | - Wanlin Li
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang 330200, China; (W.C.); (W.L.); (L.D.); (Y.C.); (F.Z.)
| | - Liuying Duan
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang 330200, China; (W.C.); (W.L.); (L.D.); (Y.C.); (F.Z.)
| | - Yaling Chen
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang 330200, China; (W.C.); (W.L.); (L.D.); (Y.C.); (F.Z.)
| | - Fantao Zhang
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang 330200, China; (W.C.); (W.L.); (L.D.); (Y.C.); (F.Z.)
| | - Biaolin Hu
- Rice Research Institute, National Engineering Laboratory for Rice (Nanchang), Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China
| | - Jiankun Xie
- Laboratory of Plant Genetic Improvement and Biotechnology, Jiangxi Normal University, Nanchang 330200, China; (W.C.); (W.L.); (L.D.); (Y.C.); (F.Z.)
| |
Collapse
|
6
|
Zhang X, Wang Q, Fan G, Tang L, Shao Y, Mao B, Lv Q, Zhao B. Utilizing differences in bTH tolerance between the parents of two-line hybrid rice to improve the purity of hybrid rice seed. FRONTIERS IN PLANT SCIENCE 2023; 14:1217893. [PMID: 37600184 PMCID: PMC10435883 DOI: 10.3389/fpls.2023.1217893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023]
Abstract
Introduction Two-line hybrid rice based on Photoperiod/thermo-sensitive genic male sterile (P/TGMS) lines has been developed and applied widely in agriculture due to the freedom in making hybrid combinations, less difficulty in breeding sterile lines, and simpler procedures for breeding and producing hybrid seed. However, there are certain risks associated with hybrid seed production; if the temperature during the P/TGMS fertility-sensitive period is lower than the critical temperature, seed production will fail due to self-pollination. In a previous study, we found that the issue of insufficient purity of two-line hybrid rice seed could be initially addressed by using the difference in tolerance to β-triketone herbicides (bTHs) between the female parent and the hybrid seeds. Methods In this study, we further investigated the types of applicable herbicides, application methods, application time, and the effects on physiological and biochemical indexes and yield in rice. Results The results showed that this method could be used for hybrid purification by soaking seeds and spraying plants with the bTH benzobicylon (BBC) at safe concentrations in the range of 37.5-112.5 mg/L, and the seeds could be soaked in BBC at a treatment rate of 75.0 mg/L for 36-55 h without significant negative effects. The safe concentration for spraying in the field is 50.0-400.0 mg/L BBC at the three-leaf stage. Unlike BBC, Mesotrione (MST) can only be sprayed to achieve hybrid purification at concentrations between 10.0 and 70.0 mg/L without affecting yield. The three methods of hybrid seed purification can reach 100% efficiency without compromising the nutritional growth and yield of hybrid rice. Moreover, transcriptome sequencing revealed that 299 up-regulated significant differentially expressed genes (DEGs) in the resistant material (Huazhan) poisoned by BBC, were mainly enriched in phenylalanine metabolism and phenylpropanoid biosynthesis pathway, it may eliminate the toxic effects of herbicides through this way. Discussion Our study establishes a foundation for the application of the bTH seed purification strategy and the three methods provide an effective mechanism for improving the purity of two-line hybrid rice seeds.
Collapse
Affiliation(s)
- Xiuli Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Qing Wang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Guojian Fan
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Li Tang
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Ye Shao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Bigang Mao
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Qiming Lv
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Bingran Zhao
- Longping Branch, College of Biology, Hunan University, Changsha, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| |
Collapse
|
7
|
Morales KY, Bridgeland AH, Hake KD, Udall JA, Thomson MJ, Yu JZ. Homology-based identification of candidate genes for male sterility editing in upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1006264. [PMID: 36589117 PMCID: PMC9795482 DOI: 10.3389/fpls.2022.1006264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Upland cotton (Gossypium hirsutum L.) accounts for more than 90% of the world's cotton production, providing natural material for the textile and oilseed industries worldwide. One strategy for improving upland cotton yields is through increased adoption of hybrids; however, emasculation of cotton flowers is incredibly time-consuming and genetic sources of cotton male sterility are limited. Here we review the known biochemical modes of plant nuclear male sterility (NMS), often known as plant genetic male sterility (GMS), and characterized them into four groups: transcriptional regulation, splicing, fatty acid transport and processing, and sugar transport and processing. We have explored protein sequence homology from 30 GMS genes of three monocots (maize, rice, and wheat) and three dicots (Arabidopsis, soybean, and tomato). We have analyzed evolutionary relationships between monocot and dicot GMS genes to describe the relative similarity and relatedness of these genes identified. Five were lowly conserved to their source species, four unique to monocots, five unique to dicots, 14 highly conserved among all species, and two in the other category. Using this source, we have identified 23 potential candidate genes within the upland cotton genome for the development of new male sterile germplasm to be used in hybrid cotton breeding. Combining homology-based studies with genome editing may allow for the discovery and validation of GMS genes that previously had no diversity observed in cotton and may allow for development of a desirable male sterile mutant to be used in hybrid cotton production.
Collapse
Affiliation(s)
- Karina Y. Morales
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Aya H. Bridgeland
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Kater D. Hake
- Cotton Incorporated, Agricultural and Environment Research, Cary, NC, United States
| | - Joshua A. Udall
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| | - Michael J. Thomson
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - John Z. Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, United States
| |
Collapse
|
8
|
Zhang H, Li X, Xu Z, Zhao X, Wan Z, Cheng X, Liu Q, Gu M, Tang S. The Effects of Rf4 and the Genetic Mechanism Behind Fertility Restoration of Wild Abortive Cytoplasmic Male Sterility (WA-CMS) in Japonica Rice (Oryza sativa ssp. Japonica). RICE (NEW YORK, N.Y.) 2022; 15:59. [PMID: 36441296 PMCID: PMC9705664 DOI: 10.1186/s12284-022-00605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Wild abortive-type cytoplasmic male sterility (WA-type CMS) has been exclusively used in hybrid seed production in indica rice cultivars, and fertility restoration in WA-type CMS is controlled by two major restorer genes, Rf3 and Rf4, through a sporophytic mechanism. However, the genetic mechanism underlying fertility restoration in WA-type CMS in japonica cultivars is poorly understood. In the present study, C418, a leading Chinsurah Boro II- (BT)-type japonica restorer line, showed partial restoration ability in WA-type japonica CMS lines. The 1:1 segregation ratio of partially fertile to sterile plants in a three-cross F1 population indicated that fertility restoration is controlled by one dominant gene. Gene mapping and sequencing results revealed that the target gene should be Rf4. The Rf4 gene restores fertility through a sporophytic mechanism, but the Rf4 pollen grains show a preferential fertilization in the testcross F1 plants. Furthermore, Rf4 was confirmed to have only a minor effect on fertility restoration in WA-type japonica CMS lines, and Rf gene dosage effects influenced the fertility restoration of WA-type CMS in japonica rice. The results of our study not only provide valuable insights into the complex genetic mechanisms underlying fertility restoration of WA-type CMS but will also facilitate the efficient utilization of WA-type CMS in japonica rice lines.
Collapse
Affiliation(s)
- Honggen Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| | - Xixu Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiangqiang Zhao
- School of Life Sciences, Nantong University, Nantong, 226019, China
| | - Zihao Wan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Xiaojun Cheng
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Minghong Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Shuzhu Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
9
|
Long W, Li Y, Yuan Z, Luo L, Luo L, Xu W, Cai Y, Xie H. Development of InDel markers for Oryza sativa ssp. javanica based on whole-genome resequencing. PLoS One 2022; 17:e0274418. [PMID: 36215240 PMCID: PMC9550083 DOI: 10.1371/journal.pone.0274418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 08/30/2022] [Indexed: 11/07/2022] Open
Abstract
Oryza sativa ssp. javanica rice varieties exhibit a wide variation in the phenotypes of several important agronomic traits, including grain quality, grain shape, plant architecture, disease resistance, and high adaption to an unfavorable environment, indicating a great potential for rice improvement. DNA molecular markers are basic and critical tools in genetic analysis and gene mining. However, only a few whole-genome variation analyses have been performed in Oryza sativa ssp. Javanica (tropical japonica rice), and this has hampered the utilization of such an important resource. In this study, the length of insertions/deletions variation greater larger than 10 bp from 10 Oryza sativa ssp. indica rice and 10 Oryza sativa ssp. tropical japonica rice were extracted by using the Nipponbare genome as a reference. A total of 118 primer pairs which were almost evenly distributed on each chromosome corresponding to the loci of InDels were designed by the Primer 5 program. We confirmed 85 InDel markers from 60 rice varieties, including indica and tropical japonica, by running polyacrylamide gels. The InDel markers function like SSRs in identifying hybrids, calculating genetic distance, constructing the genetic linkage map, and gene mining. The InDel markers developed in this study might help in genetic studies and to investigate the tropical japonica rice varieties.
Collapse
Affiliation(s)
- Weixiong Long
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Yonghui Li
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Zhengqing Yuan
- State key Laboratory of Hybrid Rice, Wuhan University, Wuhan, China
| | - Lihua Luo
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Laiyang Luo
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Weibiao Xu
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Yaohui Cai
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China
| | - Hongwei Xie
- Jiangxi Super-rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Laboratory for Rice, Nanchang, China,* E-mail:
| |
Collapse
|
10
|
Long W, Luo L, Luo L, Xu W, Li Y, Cai Y, Xie H. Whole Genome Resequencing of 20 Accessions of Rice Landraces Reveals Javanica Genomic Structure Variation and Allelic Genotypes of a Grain Weight Gene TGW2. FRONTIERS IN PLANT SCIENCE 2022; 13:857435. [PMID: 35548287 PMCID: PMC9083905 DOI: 10.3389/fpls.2022.857435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/01/2022] [Indexed: 06/15/2023]
Abstract
The landraces preserved by indigenous worldwide exhibited larger variation in the phenotypes and adaption to different environments, which suggests that they comprise rich resources and can be served as a gene pool for rice improvement. Despite extensive studies on cultivated rice, the variations and relationships between landraces and modern cultivated rice remain unclear. In this study, a total of 20 varieties that include 10 Oryza javanica collected from different countries worldwide and 10 Oryza indica from China were genotyped and yielded a sum of 99.9-Gb resequencing raw data. With the genomic sequence of the japonica cultivar Nipponbare as a reference, the following genetic features of single-nucleotide polymorphism (SNP) ranged from 861,177 to 1,044,617, insertion-deletion polymorphisms (InDels) ranged from 164,018 to 211,135, and structural variation (SV) ranged from 3,313 to 4,959 were identified in Oryza javanica. Variation between the two subspecies was also determined that 584,104 SNPs, 75,351 InDels, 104,606 SNPs, and 19,872 InDels specific to Oryza indica and Oryza javanica, respectively. Furthermore, Gene Ontology (GO) and KEGG of Oryza javanica-specific SNP-related genes revealed that they participated in DNA metabolic process, DNA replication, and DNA integration. The sequence variation and candidate grain shape-related gene TGW2 were identified through Fst and sweep selective analysis. Hap4 of TGW2 is performed better than others. The whole genome sequence data and genetic variation information illustrated in this study will serve as an important gene pool for molecular breeding and facilitate genetic analysis of Oryza javanica varieties.
Collapse
|
11
|
Zhang G. The Next Generation of Rice: Inter-Subspecific Indica- Japonica Hybrid Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:857896. [PMID: 35422822 PMCID: PMC9002350 DOI: 10.3389/fpls.2022.857896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/03/2022] [Indexed: 05/31/2023]
Abstract
Rice (Oryza sativa) is an important food crop and has two subspecies, indica and japonica. Since the last century, four generations of rice varieties have been applied to rice production. Semi-dwarf rice, intra-subspecific hybrid rice, and inter-subspecific introgression rice were developed successively by genetic modification based on the first generation of tall rice. Each generation of rice has greater yield potential than the previous generation. Due to the stronger heterosis of indica-japonica hybrids, utilization of the inter-subspecific heterosis has long been of interest. However, indica-japonica hybrid sterility hinders the utilization of heterosis. In the past decades, indica-japonica hybrid sterility has been well understood. It is found that indica-japonica hybrid sterility is mainly controlled by six loci, S5, Sa, Sb, Sc, Sd, and Se. The indica-japonica hybrid sterility can be overcome by developing indica-compatible japonica lines (ICJLs) or wide-compatible indica lines (WCILs) using genes at the loci. With the understanding of the genetic and molecular basis of indica-japonica hybrid sterility and the development of molecular breeding technology, the development of indica-japonica hybrid rice has become possible. Recently, great progress has been made in breeding indica-japonica hybrid rice. Therefore, the indica-japonica hybrid rice will be the next generation of rice. It is expected that the indica-japonica hybrid rice will be widely applied in rice production in the near future.
Collapse
Affiliation(s)
- Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Zhang H, Wang R, Xu Z, Zhao X, Gao H, Liu Q, Tang S. The effects of Rf5 and Rf6 on fertility restoration in Honglian-type cytoplasmic male sterile (CMS) lines of japonica rice ( Oryza sativa L. ssp. japonica). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:64. [PMID: 37309312 PMCID: PMC10236119 DOI: 10.1007/s11032-021-01256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/10/2021] [Indexed: 06/14/2023]
Abstract
Honglian (HL)-type cytoplasmic male sterility (CMS) has only been used in the development of three-line indica rice hybrids, and the fertility of HL-type indica CMS lines can be restored by two non-allelic fertility-restorer (Rf) genes, Rf5 and Rf6. For the development of HL-type japonica hybrid combinations, it is therefore necessary to determine whether Rf5 and Rf6 can restore the fertility of HL-type japonica CMS lines. Here, we genetically characterized HL-type japonica CMS lines and the ability of Rf5 and Rf6 to restore fertility for breeding HL-type japonica hybrids. I2-KI pollen staining revealed that HL-type japonica CMS lines and their derived testcross F1 hybrids had stained abortive pollen grains, unlike HL-type indica CMS lines. Crossing experiments showed that Rf5 and Rf6 partially restored the fertility of HL-type japonica CMS lines, and Rf6 showed higher restorability than Rf5. Furthermore, we found that there were additive and dosage effects of Rf5 and Rf6 with respect to fertility restoration in HL-type japonica CMS lines. These results give critical insight into the breeding of HL-type japonica CMS lines and restorers, which will be helpful for the development of commercial HL-type japonica hybrids. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01256-7.
Collapse
Affiliation(s)
- Honggen Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Ruixuan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | | | - Hailin Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| | - Shuzhu Tang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
13
|
Kim S, Kim S. An insertion mutation located on putative enhancer regions of the MYB26-like gene induces inhibition of anther dehiscence resulting in novel genic male sterility in radish ( Raphanus sativus L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:67. [PMID: 37309318 PMCID: PMC10236041 DOI: 10.1007/s11032-021-01254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
A novel male-sterility trait was identified in a radish (Raphanus sativus L.) population. Although the size of male-sterile anthers was comparable to that of normal flowers, no pollen grain was observed during anther dehiscence. However, dissection of male-sterile anthers revealed an abundance of normal pollen grains. Analysis of segregating populations showed that a single recessive locus, designated RsMs1, conferred male sterility. Based on two radish draft genome sequences, molecular markers were developed to delimit the genomic region harboring the RsMs1. The region was narrowed down to approximately 24 kb after analyzing recombinants selected from 7511 individuals of a segregating population. Sequencing of the delimited region yielded six putative genes including four genes expressed in the floral tissue, and one gene with significant differential expression between male-fertile and male-sterile individuals of a segregating population. This differentially expressed gene was orthologous to the Arabidopsis MYB26 gene, which played a critical role in anther dehiscence. Excluding a synonymous single nucleotide polymorphism in exon3, no polymorphism involving coding and putative promoter regions was detected between alleles. A 955-bp insertion was identified 7.5 kb upstream of the recessive allele. Highly conserved motifs among four Brassicaceae species were identified around this insertion site, suggesting the presence of putative enhancer sequences. A functional marker was developed for genotyping of the RsMs1 based on the 955-bp insertion. A total of 120 PI accessions were analyzed using this marker, and 11 accessions were shown to carry the recessive rsms1 allele. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01254-9.
Collapse
Affiliation(s)
- Seongjun Kim
- Jeollanamdo Agricultural Research and Extension Service, Naju-si, 58213 Republic of Korea
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| | - Sunggil Kim
- Department of Horticulture, Biotechnology Research Institute, Chonnam National University, Gwangju, 61186 Republic of Korea
| |
Collapse
|
14
|
Toriyama K. Molecular basis of cytoplasmic male sterility and fertility restoration in rice. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:285-295. [PMID: 34782814 PMCID: PMC8562580 DOI: 10.5511/plantbiotechnology.21.0607a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Cytoplasmic male sterility (CMS) is a maternally inherited trait that causes dysfunctions in pollen and anther development. CMS is caused by the interaction between nuclear and mitochondrial genomes. A product of a CMS-causing gene encoded by the mitochondrial genome affects mitochondrial function and the regulation of nuclear genes, leading to male sterility. In contrast, the RESTORER OF FERTILITY gene (Rf gene) in the nuclear genome suppresses the expression of the CMS-causing gene and restores male fertility. An alloplasmic CMS line is often bred as a result of nuclear substitution, which causes the removal of functional Rf genes and allows the expression of a CMS-causing gene in mitochondria. The CMS/Rf system is an excellent model for understanding the genetic interactions and cooperative functions of mitochondrial and nuclear genomes in plants, and is also an agronomically important trait for hybrid seed production. In this review article, pollen and anther phenotypes of CMS, CMS-associated mitochondrial genes, Rf genes, and the mechanism that causes pollen abortion and its agronomical application for rice are described.
Collapse
Affiliation(s)
- Kinya Toriyama
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| |
Collapse
|
15
|
Jin Z, Seo J, Kim B, Lee SY, Koh HJ. Identification of a Candidate Gene for the Novel Cytoplasmic Male Sterility Derived from Inter-Subspecific Crosses in Rice ( Oryza sativa L.). Genes (Basel) 2021; 12:590. [PMID: 33920582 PMCID: PMC8073397 DOI: 10.3390/genes12040590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/09/2023] Open
Abstract
Tetep-cytoplasmic male sterility (CMS) was developed through successive backcrosses between subspecies indica and japonica in rice (Oryza sativa L.), which showed abnormal anther dehiscence phenotypes. Whole genome sequencing and de novo assembly of the mitochondrial genome identified the chimeric gene orf312, which possesses a transmembrane domain and overlaps with two mitotype-specific sequences (MSSs) that are unique to the Tetep-CMS line. The encoded peptide of orf312 was toxic to Escherichia coli and inhibited cell growth compared to the control under isopropyl-β-D-1-thiogalactopyranoside (IPTG) induction. The peptide of orf312 contains COX11-interaction domains, which are thought to be a main functional domain for WA352c in the wild abortive (WA-CMS) line of rice. A QTL for Rf-Tetep (restorer-of-fertility gene(s) originating from Tetep) was identified on chromosome 10. In this region, several restorer genes, Rf1a, Rf1b, and Rf4, have previously been reported. Collectively, the interactions of orf312, a candidate gene for Tetep-CMS, and Rf-Tetep, a restorer QTL, confer male sterility and fertility restoration, respectively, which enables a hybrid rice breeding system. Further studies on orf312 and isolation of Rf-Tetep will help to identify the underlying molecular mechanism of mitochondrial ORFs with the COX11-interaction domains.
Collapse
Affiliation(s)
- Zhuo Jin
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Jeonghwan Seo
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea
| | - Backki Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Seung Young Lee
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| | - Hee-Jong Koh
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (Z.J.); (J.S.); (B.K.); (S.Y.L.)
| |
Collapse
|