1
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Xue R, Guo R, Li Q, Lin T, Wu Z, Gao N, Wu F, Tong L, Zeng R, Song Y, Wang J. Rice responds to Spodoptera frugiperda infestation via epigenetic regulation of H3K9ac in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways. PLANT CELL REPORTS 2024; 43:78. [PMID: 38393406 DOI: 10.1007/s00299-024-03160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
KEY MESSAGE This study provided important insights into the complex epigenetic regulatory of H3K9ac-modified genes involved in the jasmonic acid signaling and phenylpropanoid biosynthesis pathways of rice in response to Spodoptera frugiperda infestation. Physiological and molecular mechanisms underlying plant responses to insect herbivores have been well studied, while epigenetic modifications such as histone acetylation and their potential regulation at the genomic level of hidden genes remain largely unknown. Histone 3 lysine 9 acetylation (H3K9ac) is an epigenetic marker widely distributed in plants that can activate gene transcription. In this study, we provided the genome-wide profiles of H3K9ac in rice (Oryza sativa) infested by fall armyworm (Spodoptera frugiperda, FAW) using CUT&Tag-seq and RNA-seq. There were 3269 and 4609 up-regulated genes identified in plants infested by FAW larvae for 3 h and 12 h, respectively, which were mainly enriched in alpha-linolenic acid and phenylpropanoid pathways according to transcriptomic analysis. In addition, CUT&Tag-seq analysis revealed increased H3K9ac in FAW-infested plants, and there were 422 and 543 up-regulated genes enriched with H3K9ac observed at 3 h and 12 h after FAW feeding, respectively. Genes with increased H3K9ac were mainly enriched in the transcription start site (TSS), suggesting that H3K9ac is related to gene transcription. Integrative analysis of both RNA-seq and CUT&Tag-seq data showed that up-expressed genes with H3K9ac enrichment were mainly involved in the jasmonic acid (JA) and phenylpropanoid pathways. Particularly, two spermidine hydroxycinnamoyl transferase genes SHT1 and SHT2 involved in phenolamide biosynthesis were highly modified by H3K9ac in FAW-infested plants. Furthermore, the Ossht1 and Ossht2 transgenic lines exhibited decreased resistance against FAW larvae. Our findings suggest that rice responds to insect herbivory via H3K9ac epigenetic regulation in the JA signaling and phenolamide biosynthesis pathways.
Collapse
Affiliation(s)
- Rongrong Xue
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ruiqing Guo
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Qing Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Tianhuang Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Zicha Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Ning Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Fei Wu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jie Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
- Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
3
|
Leclerc L, Nguyen TH, Duval P, Mariotti V, Petitot AS, Orjuela J, Ogier JC, Gaudriault S, Champion A, Nègre N. Early transcriptomic responses of rice leaves to herbivory by Spodoptera frugiperda. Sci Rep 2024; 14:2836. [PMID: 38310172 PMCID: PMC10838271 DOI: 10.1038/s41598-024-53348-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/31/2024] [Indexed: 02/05/2024] Open
Abstract
During herbivory, chewing insects deposit complex oral secretions (OS) onto the plant wound. Understanding how plants respond to the different cues of herbivory remains an active area of research. In this study, we used an herbivory-mimick experiment to investigate the early transcriptional response of rice plants leaves to wounding, OS, and OS microbiota from Spodoptera frugiperda larvae. Wounding induced a massive early response associated to hormones such as jasmonates. This response switched drastically upon OS treatment indicating the activation of OS specific pathways. When comparing native and dysbiotic OS treatments, we observed few gene regulation. This suggests that in addition to wounding the early response in rice is mainly driven by the insect compounds of the OS rather than microbial. However, microbiota affected genes encoding key phytohormone synthesis enzymes, suggesting an additional modulation of plant response by OS microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Nicolas Nègre
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.
| |
Collapse
|
4
|
Zhang H, Gai C, Shao M, Fang L, Li X, Song Y, Zeng R, Chen D. Herbivory by Striped Stem Borer Triggers Polyamine Accumulation in Host Rice Plants to Promote Its Larval Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:3249. [PMID: 37765412 PMCID: PMC10534419 DOI: 10.3390/plants12183249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Polyamines (PAs) are ubiquitous low-molecular-weight aliphatic polycations in all living organisms, which are crucial for plant response to abiotic and biotic stresses. The role of PAs in plant disease resistance has been well documented. However, their involvement in plant-pest interactions remains unclear. Here, the role of PAs in rice against striped stem borer (SSB, Chilo suppressalis Walker), a destructive pest in rice production worldwide, was investigated. SSB larval infestation led to a substantial accumulation of free putrescine (Put) in rice seedlings, which was in parallel with an elevated expression of host PA biosynthesis genes Arginine Decarboxylase1 (ADC1) and ADC2. Moreover, SSB larval oral secretion application with wounding further raised the transcripts of ADC1 and ADC2 in rice compared with wounding treatment alone. The larval growth on both rice plants and artificial diet was promoted by the exogenous application of PA and inhibited by a PA biosynthesis inhibitor. On the other hand, the rice defense responses, including polyphenol oxidase (PPO) and peroxidase (POD) activities, as well as protease inhibitor level, were enhanced by a Put supplement and reduced by an ADC inhibitor. Our results indicate that SSB herbivory triggers polyamine accumulation in host rice plants, which is beneficial to SSB in rice-SSB interaction.
Collapse
Affiliation(s)
- Hao Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chaoyue Gai
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Shao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linzhi Fang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinyu Li
- Shandong Branch of Sinochem Agriculture Holdings, Zibo 256304, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daoqian Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Key Laboratory of Ministry of Agriculture and Rural Affairs of Biological Breeding for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|