Sengupta R, Mendenhall A, Sarkar N, Mukherjee C, Afshari A, Huang J, Lu B. Viral Cre-LoxP tools aid genome engineering in mammalian cells.
J Biol Eng 2017;
11:45. [PMID:
29204184 PMCID:
PMC5702101 DOI:
10.1186/s13036-017-0087-y]
[Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/14/2017] [Indexed: 01/06/2023] Open
Abstract
Background
Targeted nucleases have transformed genome editing technology, providing more efficient methods to make targeted changes in mammalian genome. In parallel, there is an increasing demand of Cre-LoxP technology for complex genome manipulation such as large deletion, addition, gene fusion and conditional removal of gene sequences at the target site. However, an efficient and easy-to-use Cre-recombinase delivery system remains lacking.
Results
We designed and constructed two sets of expression vectors for Cre-recombinase using two highly efficient viral systems, the integrative lentivirus and non-integrative adeno associated virus. We demonstrate the effectiveness of those methods in Cre-delivery into stably-engineered HEK293 cells harboring LoxP-floxed red fluorescent protein (RFP) and puromycin (Puro) resistant reporters. The delivered Cre recombinase effectively excised the floxed RFP-Puro either directly or conditionally, therefore validating the function of these molecular tools. Given the convenient options of two selections markers, these viral-based systems offer a robust and easy-to-use tool for advanced genome editing, expanding complicated genome engineering to a variety of cell types and conditions.
Conclusions
We have developed and functionally validated two viral-based Cre-recombinase delivery systems for efficient genome manipulation in various mammalian cells. The ease of gene delivery with the built-in reporters and inducible element enables live cell monitoring, drug selection and temporal knockout, broadening applications of genome editing.
Collapse