1
|
Kowolik E, Szczygieł D, Szczygieł M, Drzał A, Vemuri K, Olsson AK, Griffioen AW, Nowak-Sliwinska P, Wolnicka-Glubisz A, Elas M. Preclinical Photodynamic Therapy Targeting Blood Vessels with AGuIX ® Theranostic Nanoparticles. Cancers (Basel) 2024; 16:3924. [PMID: 39682113 DOI: 10.3390/cancers16233924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Glioblastoma multiforme (GBM) is the most common highly aggressive, primary malignant brain tumor in adults. Current experimental strategies include photodynamic therapy (PDT) and new drug delivery technologies such as nanoparticles, which could play a key role in the treatment, diagnosis, and imaging of brain tumors. Objectives: The purpose of this study was to test the efficacy of PDT using AGuIX-TPP, a polysiloxane-based nanoparticle (AGuIX) that contains TPP (5,10,15,20-tetraphenyl-21H,23H-porphine), in biological models of glioblastoma multiforme and to investigate the vascular mechanisms of action at multiple complexity levels. Methods: PDT effects were studied in monolayer and spheroid cell culture, as well as tumors in chicken chorioallantoic membranes (CAMs) and in mice were studied. Results: Treatment was effective in both endothelial ECRF and glioma U87 cells, as well as in the inhibition of growth of the glioma spheroids. PDT using AGuIX-TPP inhibited U87 tumors growing in CAM and destroyed their vascularization. The U87 tumors were also grown in nude mice. Their vascular network, as well as oxygen partial pressure, were assessed using ultrasound and EPR oximetry. The treatment damaged tumor vessels and slightly decreased oxygen levels. Conclusions: PDT with AGuIX-TPP was effective against glioma cells, spheroids, and tumors; however, in mice, its efficacy appeared to be strongly related to the presence of blood vessels in the tumor before the treatment.
Collapse
Affiliation(s)
- Ewa Kowolik
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa Street, 31-387 Krakow, Poland
| | - Dariusz Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa Street, 31-387 Krakow, Poland
| | - Małgorzata Szczygieł
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa Street, 31-387 Krakow, Poland
| | - Agnieszka Drzał
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa Street, 31-387 Krakow, Poland
| | - Kalyani Vemuri
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Husargatan 3, SE-75123 Uppsala, Sweden
| | - Arjan W Griffioen
- Angiogenesis Laboratory, Department of Medical Oncology, Amsterdam UMC, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
- Translational Research Center in Oncohaematology, 1211 Geneva, Switzerland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa Street, 31-387 Krakow, Poland
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 7 Gronostajowa Street, 31-387 Krakow, Poland
| |
Collapse
|
2
|
Cook N, Shelton N, Gibson S, Barnes P, Alinaghi-Zadeh R, Jameson MG. ACPSEM position paper: the safety of magnetic resonance imaging linear accelerators. Phys Eng Sci Med 2023; 46:19-43. [PMID: 36847966 PMCID: PMC10030425 DOI: 10.1007/s13246-023-01224-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 03/01/2023]
Abstract
Magnetic Resonance Imaging linear-accelerator (MRI-linac) equipment has recently been introduced to multiple centres in Australia and New Zealand. MRI equipment creates hazards for staff, patients and others in the MR environment; these hazards must be well understood, and risks managed by a system of environmental controls, written procedures and a trained workforce. While MRI-linac hazards are similar to the diagnostic paradigm, the equipment, workforce and environment are sufficiently different that additional safety guidance is warranted. In 2019 the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) formed the Magnetic Resonance Imaging Linear-Accelerator Working Group (MRILWG) to support the safe clinical introduction and optimal use of MR-guided radiation therapy treatment units. This Position Paper is intended to provide safety guidance and education for Medical Physicists and others planning for and working with MRI-linac technology. This document summarises MRI-linac hazards and describes particular effects which arise from the combination of strong magnetic fields with an external radiation treatment beam. This document also provides guidance on safety governance and training, and recommends a system of hazard management tailored to the MRI-linac environment, ancillary equipment, and workforce.
Collapse
Affiliation(s)
- Nick Cook
- Christchurch Hospital, Christchurch, New Zealand
| | - Nikki Shelton
- Olivia Newton-John Cancer Wellness and Research Centre, Heidelberg, VIC Australia
| | | | | | - Reza Alinaghi-Zadeh
- Olivia Newton-John Cancer Wellness and Research Centre, Heidelberg, VIC Australia
| | - Michael G. Jameson
- GenesisCare, Sydney, NSW Australia
- University of New South Wales, Sydney, Australia
| | - on behalf of the ACPSEM Magnetic Resonance Imaging Linac Working Group (MRILWG)
- Christchurch Hospital, Christchurch, New Zealand
- Olivia Newton-John Cancer Wellness and Research Centre, Heidelberg, VIC Australia
- Townsville Cancer Centre, Douglas, QLD Australia
- Austin Health, Heidelberg, VIC Australia
- GenesisCare, Sydney, NSW Australia
- University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractThe development of nanoparticle agents for MRI-guided radiotherapy is growing at an increasing pace, with clinical trials now underway and many pre-clinical evaluation studies ongoing. Gadolinium and iron-oxide-based nanoparticles remain the most clinically advanced nanoparticles to date, although several promising candidates are currently under varying stages of development. Goals of current and future generation nanoparticle-based contrast agents for MRI-guided radiotherapy include achieving positive signal contrast on T1-weighted MRI scans, local radiation enhancement at clinically relevant concentrations and, where applicable, avoidance of uptake by the reticuloendothelial system. Exploiting the enhanced permeability and retention effect or the use of active targeting ligands on nanoparticle surfaces is utilised to promote tumour uptake. This review outlines the current status of promising nanoparticle agents for MRI-guided radiation therapy, including several platforms currently undergoing clinical evaluation or at various stages of the pre-clinical development process. Challenges facing nanoparticle agents and possible avenues for current and future development are discussed.
Collapse
|
4
|
An Overview of Gadolinium-Based Oxide and Oxysulfide Particles: Synthesis, Properties, and Biomedical Applications. CRYSTALS 2021. [DOI: 10.3390/cryst11091094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the last decade, the publications presenting novel physical and chemical aspects of gadolinium-based oxide (Gd2O3) and oxysulfide (Gd2O2S) particles in the micro- or nano-scale have increased, mainly stimulated by the exciting applications of these materials in the biomedical field. Their optical properties, related to down and upconversion phenomena and the ability to functionalize their surface, make them attractive for developing new probes for selective targeting and emergent bioimaging techniques, either for biomolecule labeling or theranostics. Moreover, recent reports have shown interesting optical behavior of these systems influenced by the synthesis methods, dopant amount and type, particle shape and size, and surface functionality. Hence, this review presents a compilation of the latest works focused on evaluating the optical properties of Gd2O3 and Gd2O2S particles as a function of their physicochemical and morphological properties; and also on their novel applications as MRI contrast agents and drug delivery nanovehicles, discussed along with their administration routes, biodistribution, cytotoxicity, and clearance mechanisms. Perspectives for this field are also identified and discussed.
Collapse
|