1
|
Xu X, He Y, Liu J. Berberine: A multifaceted agent for lung cancer treatment-from molecular insight to clinical applications. Gene 2024; 934:149021. [PMID: 39427827 DOI: 10.1016/j.gene.2024.149021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Lung cancer is a major cause of cancer-related deaths worldwide, and it poses a significant threat to global health due to its high incidence and mortality rates. There is an urgent need for better prevention, early detection, and effective treatments for this disease. The treatment options for lung cancer depend on various factors such as the stage of the disease, the type of cancer, and the patient's overall health. Currently, the primary treatment strategies include surgery, chemotherapy, radiation therapy, targeted therapy, immunotherapy, and combination therapies. Berberine, a natural alkaloid found in medicinal plants, has demonstrated potential as an effective anti-cancer agent against lung cancer. The present study aims to summarize the evidence supporting Berberine's ability to inhibit the growth of lung cancer cells, induce apoptosis, and slow down tumor growth in both laboratory and animal studies. The study also shed light on the complex molecular mechanisms involved in its anti-tumor effects, including its impact on signaling pathways, DNA repair systems, and interaction with non-coding RNAs, all of which contribute to tumor suppression. Additionally, the synergistic effects of Berberine with other natural compounds and chemotherapy drugs are discussed. Overall, its multifaceted approach and proven effectiveness justify further research to develop Berberine into a viable treatment option for lung cancer patients. Abbreviations: BBR, Berberine; EMT, epithelial-mesenchymal transition; NSCLC, non-small cell lung cancer; ROS, reactive oxygen species; ASK1, Apoptosis Signal-regulating Kinase 1; JNK, c-Jun N-terminal kinase; BHC, Berberine Hydrochloride; DSB, double-strand breaks; CSN, COP9 signalosome; NIR, near-infrared; LLC, Lewis lung carcinoma; RTK, receptor tyrosine kinase; B-Phyt-LCNs, Berberine-Phytantriol liquid crystalline nanoparticles; ER, endoplasmic reticulum; Ber-LCNs, Berberine-loaded liquid crystalline nanoparticles; BNS, Berberine nanostructure; BER-CS-NPs, Berberine-loaded chitosan nanoparticles; B-Phyt-LCNs, Berberine-Phytantriol liquid crystalline nanoparticles; B-Phyt-LCNs, Berberine-loaded liquid crystalline nanoparticles; Ber-LCNs, Berberine-loaded liquid crystalline nanoparticles; B-ZnO NPs, Berberine-loaded zinc oxide nanoparticles; B-C60, Berberine-C60 complex; LTP, Low-Temperature Plasma.
Collapse
Affiliation(s)
- Xiaodan Xu
- Pharmacy Department of Qishan Hospital in Yantai City, Yantai, Shandong 264000, China
| | - Yuanyuan He
- Pharmacy Department of Qishan Hospital in Yantai City, Yantai, Shandong 264000, China
| | - Jungang Liu
- Yicheng Traditional Chinese Medical Science Hospital, Shandong, Zaozhuang 277300, China.
| |
Collapse
|
2
|
Hsu CY, Pallathadka H, Gupta J, Ma H, Al-Shukri HHK, Kareem AK, Zwamel AH, Mustafa YF. Berberine and berberine nanoformulations in cancer therapy: Focusing on lung cancer. Phytother Res 2024. [PMID: 38994919 DOI: 10.1002/ptr.8255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024]
Abstract
Lung cancer is the second most prevalent cancer and ranks first in cancer-related death worldwide. Due to the resistance development to conventional cancer therapy strategies, including chemotherapy, radiotherapy, targeted therapy, and immunotherapy, various natural products and their extracts have been revealed as alternatives. Berberine (BBR), which is present in the stem, root, and bark of various trees, could exert anticancer activities by regulating tumor cell proliferation, apoptosis, autophagy, metastasis, angiogenesis, and immune responses via modulating several signaling pathways within the tumor microenvironment. Due to its poor water solubility, poor pharmacokinetics/bioavailability profile, and extensive p-glycoprotein-dependent efflux, BBR application in (pre) clinical studies is restricted. To overcome these limitations, BBR can be encapsulated in nanoparticle (NP)-based drug delivery systems, as monotherapy or combinational therapy, and improve BBR therapeutic efficacy. Nanoformulations also facilitate the selective delivery of BBR into lung cancer cells. In addition to the anticancer activities of BBR, especially in lung cancer, here we reviewed the BBR nanoformulations, including polymeric NPs, metal-based NPs, carbon nanostructures, and others, in the treatment of lung cancer.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | | | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Haowei Ma
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - A K Kareem
- Biomedical Engineering Department, College of Engineering and Technologies, Al-Mustaqbal University, Hillah, Iraq
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
3
|
Khoshandam A, Imenshahidi M, Hosseinzadeh H. Pharmacokinetic of berberine, the main constituent of Berberis vulgaris L.: A comprehensive review. Phytother Res 2022; 36:4063-4079. [PMID: 36221815 DOI: 10.1002/ptr.7589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
Barberry (Berberis vulgaris L.) is a medicinal plant and its main constituent is an isoquinoline alkaloid named berberine that has multiple pharmacological effects such as antioxidant, anti-microbial, antiinflammatory, anticancer, anti-diabetes, anti-dyslipidemia, and anti-obesity. However, it has restricted clinical uses due to its very poor solubility and bioavailability (less than 1%). It undergoes demethylenation, reduction, and cleavage of the dioxymethylene group in the first phase of metabolism. Its phase two reactions include glucuronidation, sulfation, and methylation. The liver is the main site for berberine distribution. Berberine could excrete in feces, urine, and bile. Fecal excretion of berberine (11-23%) is higher than urinary and biliary excretion routes. However, a major berberine metabolite is excreted in urine greater than in feces. Concomitant administration of berberine with other drugs such as metformin, cyclosporine A, digoxin, etc. may result in important interactions. Thus, in this review, we gathered and dissected any related animal and human research articles regarding the pharmacokinetic parameters of berberine including bioavailability, metabolism, distribution, excretion, and drug-drug interactions. Also, we discussed and gathered various animal and human studies regarding the developed products of berberine with better bioavailability and consequently, better therapeutic effects.
Collapse
Affiliation(s)
- Arian Khoshandam
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Nie Z, Vahdani Y, Cho WC, Bloukh SH, Edis Z, Haghighat S, Falahati M, Kheradmandi R, Jaragh-Alhadad LA, Sharifi M. 5-Fluorouracil-containing inorganic iron oxide/platinum nanozymes with dual drug delivery and enzyme-like activity for the treatment of breast cancer. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103966] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
5
|
Prylutska SV, Franskevych DV, Yemets AI. Cellular Biological and Molecular Genetic Effects of Carbon Nanomaterials in Plants. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Jiang X, Jiang Z, Jiang M, Sun Y. Berberine as a Potential Agent for the Treatment of Colorectal Cancer. Front Med (Lausanne) 2022; 9:886996. [PMID: 35572960 PMCID: PMC9096113 DOI: 10.3389/fmed.2022.886996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/29/2022] [Indexed: 01/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed and deadly malignancies worldwide. The incidence of CRC has been increasing, especially in young people. Although great advances have been made in managing CRC, the prognosis is unfavorable. Numerous studies have shown that berberine (BBR) is a safe and effective agent presenting significant antitumor effects. Nevertheless, the detailed underlying mechanism in treating CRC remains indistinct. In this review, we herein offer beneficial evidence for the utilization of BBR in the management and treatment of CRC, and describe the underlying mechanism(s). The review emphasizes several therapeutic effects of BBR and confirms that BBR could suppress CRC by modulating gene expression, the cell cycle, the inflammatory response, oxidative stress, and several signaling pathways. In addition, BBR also displays antitumor effects in CRC by regulating the gut microbiota and mucosal barrier function. This review emphasizes BBR as a potentially effective and safe drug for CRC therapy.
Collapse
Affiliation(s)
- Xi Jiang
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongxiu Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Yan Sun
| |
Collapse
|
7
|
Interceptor potential of C 60 fullerene aqueous solution: a comparative analysis using the example of the antitumor antibiotic mitoxantrone. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:297-307. [PMID: 35307756 DOI: 10.1007/s00249-022-01597-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/06/2022] [Accepted: 03/12/2022] [Indexed: 01/05/2023]
Abstract
We performed a qualitative and quantitative analysis of intermolecular interactions in aqueous solution between the antitumor antibiotic mitoxantrone and C60 fullerene in comparison with interactions between the antibiotic and well-known aromatic molecules such as caffeine and flavin mononucleotide, commonly referred to as interceptor molecules. For these purposes, we obtained equilibrium hetero-association constants of these interactions using a UV/Vis titration experiment. Special attention was paid to the interaction of C60 fullerene with mitoxantrone, which has been quantified for the first time. Based on the theory of interceptor-protector action and using a set of measured equilibrium constants we managed to estimate the relative biological effect of these mixtures in a model living system, taking human buccal epithelium cells as an example. We demonstrated that C60 fullerene is able to restore the functional activity of the buccal epithelium cell nucleus after exposure to mitoxantrone, which makes it possible to use C60 fullerene as regulator of medico-biological activity of the antibiotic.
Collapse
|
8
|
Shariatzadeh S, Moghimi N, Khalafi F, Shafiee S, Mehrabi M, Ilkhani S, Tosan F, Nakhaei P, Alizadeh A, Varma RS, Taheri M. Metallic Nanoparticles for the Modulation of Tumor Microenvironment; A New Horizon. Front Bioeng Biotechnol 2022; 10:847433. [PMID: 35252155 PMCID: PMC8888840 DOI: 10.3389/fbioe.2022.847433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023] Open
Abstract
Cancer is one of the most critical human challenges which endangers many people’s lives every year with enormous direct and indirect costs worldwide. Unfortunately, despite many advanced treatments used in cancer clinics today, the treatments are deficiently encumbered with many side effects often encountered by clinicians while deploying general methods such as chemotherapy, radiotherapy, surgery, or a combination thereof. Due to their low clinical efficacy, numerous side effects, higher economic costs, and relatively poor acceptance by patients, researchers are striving to find better alternatives for treating this life-threatening complication. As a result, Metal nanoparticles (Metal NPs) have been developed for nearly 2 decades due to their important therapeutic properties. Nanoparticles are quite close in size to biological molecules and can easily penetrate into the cell, so one of the goals of nanotechnology is to mount molecules and drugs on nanoparticles and transfer them to the cell. These NPs are effective as multifunctional nanoplatforms for cancer treatment. They have an advantage over routine drugs in delivering anticancer drugs to a specific location. However, targeting cancer sites while performing anti-cancer treatment can be effective in improving the disease and reducing its complications. Among these, the usage of these nanoparticles (NPs) in photodynamic therapy and sonodynamic therapy are notable. Herein, this review is aimed at investigating the effect and appliances of Metal NPs in the modulation tumor microenvironment which bodes well for the utilization of vast and emerging nanomaterial resources.
Collapse
Affiliation(s)
- Siavash Shariatzadeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Moghimi
- Department of Anatomy, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farima Khalafi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepehr Shafiee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University, Tehran, Iran
| | - Foad Tosan
- Semnan University of Medical Sciences Dental Student Research Committee, Semnan, Iran
| | - Pooria Nakhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Alizadeh
- Deputy of Research and Technology, Ministry of Health and Medical Education, Tehran, Iran
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Mohammad Taheri
- Skull Base Research Center, Loghmna Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri,
| |
Collapse
|
9
|
Horak I, Prylutska S, Krysiuk I, Luhovskyi S, Hrabovsky O, Tverdokhleb N, Franskevych D, Rumiantsev D, Senenko A, Evstigneev M, Drobot L, Matyshevska O, Ritter U, Piosik J, Prylutskyy Y. Nanocomplex of Berberine with C 60 Fullerene Is a Potent Suppressor of Lewis Lung Carcinoma Cells Invasion In Vitro and Metastatic Activity In Vivo. MATERIALS 2021; 14:ma14206114. [PMID: 34683705 PMCID: PMC8540026 DOI: 10.3390/ma14206114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Effective targeting of metastasis is considered the main problem in cancer therapy. The development of herbal alkaloid Berberine (Ber)-based anticancer drugs is limited due to Ber’ low effective concentration, poor membrane permeability, and short plasma half-life. To overcome these limitations, we used Ber noncovalently bound to C60 fullerene (C60). The complexation between C60 and Ber molecules was evidenced with computer simulation. The aim of the present study was to estimate the effect of the free Ber and C60-Ber nanocomplex in a low Ber equivalent concentration on Lewis lung carcinoma cells (LLC) invasion potential, expression of epithelial-to-mesenchymal transition (EMT) markers in vitro, and the ability of cancer cells to form distant lung metastases in vivo in a mice model of LLC. It was shown that in contrast to free Ber its nanocomplex with C60 demonstrated significantly higher efficiency to suppress invasion potential, to downregulate the level of EMT-inducing transcription factors SNAI1, ZEB1, and TWIST1, to unblock expression of epithelial marker E-cadherin, and to repress cancer stem cells-like markers. More importantly, a relatively low dose of C60-Ber nanocomplex was able to suppress lung metastasis in vivo. These findings indicated that сomplexation of natural alkaloid Ber with C60 can be used as an additional therapeutic strategy against aggressive lung cancer.
Collapse
Affiliation(s)
- Iryna Horak
- Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., 01030 Kyiv, Ukraine; (I.H.); (I.K.); (O.H.); (L.D.); (O.M.)
| | - Svitlana Prylutska
- Faculty of Plant Ptotection, Biotechnology and Ecology, National University of Life and Environmental Science of Ukraine, 15 Heroiv Oborony Str., 03041 Kyiv, Ukraine
- Correspondence: (S.P.); (J.P.)
| | - Iryna Krysiuk
- Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., 01030 Kyiv, Ukraine; (I.H.); (I.K.); (O.H.); (L.D.); (O.M.)
| | - Serhii Luhovskyi
- Chebotarov Institute of Gerontology, NAS of Ukraine, 67 Vyshgorodska Str., 04114 Kyiv, Ukraine;
| | - Oleksii Hrabovsky
- Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., 01030 Kyiv, Ukraine; (I.H.); (I.K.); (O.H.); (L.D.); (O.M.)
| | - Nina Tverdokhleb
- Leibniz Institute of Polymer Research Dresden, 6 Hohe Str., 01069 Dresden, Germany;
| | - Daria Franskevych
- Department of Biophysics and Medical Informatics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (D.F.); (Y.P.)
| | - Dmytro Rumiantsev
- Institute of Physics, NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine; (D.R.); (A.S.)
| | - Anton Senenko
- Institute of Physics, NAS of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine; (D.R.); (A.S.)
| | - Maxim Evstigneev
- Department of Biology and Chemistry, Belgorod State University, 85 Pobedy Str., 308015 Belgorod, Russia;
| | - Liudmyla Drobot
- Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., 01030 Kyiv, Ukraine; (I.H.); (I.K.); (O.H.); (L.D.); (O.M.)
| | - Olga Matyshevska
- Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., 01030 Kyiv, Ukraine; (I.H.); (I.K.); (O.H.); (L.D.); (O.M.)
| | - Uwe Ritter
- Institute of Chemistry and Biotechnology, Technical University of Ilmenau, 25 Weimarer Str., 98693 Ilmenau, Germany;
| | - Jacek Piosik
- Intercollegiate Faculty of Biotechnology, UG-MUG (University of Gdansk and Medical University of Gdansk), Abrahama 58, 80-307 Gdańsk, Poland
- Correspondence: (S.P.); (J.P.)
| | - Yuriy Prylutskyy
- Department of Biophysics and Medical Informatics, Taras Shevchenko National University of Kyiv, 64 Volodymyrska Str., 01601 Kyiv, Ukraine; (D.F.); (Y.P.)
| |
Collapse
|