1
|
Lagler DK, Hannemann E, Eck K, Klawatsch J, Seichter D, Russ I, Mendel C, Lühken G, Krebs S, Blum H, Upadhyay M, Medugorac I. Fine-mapping and identification of candidate causal genes for tail length in the Merinolandschaf breed. Commun Biol 2022; 5:918. [PMID: 36068271 PMCID: PMC9448734 DOI: 10.1038/s42003-022-03854-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022] Open
Abstract
Docking the tails of lambs in long-tailed sheep breeds is a common practice worldwide. But this practice is associated with pain. Breeding for a shorter tail could offer an alternative. Therefore, this study aimed to analyze the natural tail length variation in the Merinolandschaf and to identify causal alleles for the short tail phenotype segregating within long-tailed breeds. We used SNP-based association analysis and haplotype-based mapping in 362 genotyped (Illumina OvineSNP50) and phenotyped Merinolandschaf lambs. Genome-wide significant regions were capture sequenced in 48 lambs and comparatively analyzed in various long and short-tailed sheep breeds and wild sheep subspecies. Here we show a SNP located in the first exon of HOXB13 and a SINE element located in the promotor of HOXB13 as promising candidates. These results enable more precise breeding towards shorter tails, improve animal welfare by amplification of ancestral alleles and contribute to a better understanding of differential embryonic development.
Collapse
Affiliation(s)
- Dominik Karl Lagler
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Elisabeth Hannemann
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
| | - Kim Eck
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Jürgen Klawatsch
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Doris Seichter
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Ingolf Russ
- Tierzuchtforschung e.V. München, Senator-Gerauer-Str. 23, 85586, Poing, Germany
| | - Christian Mendel
- Institute for Animal Breeding, Bavarian State Research Center for Agriculture, Prof.-Dürrwaechter-Platz 1, 85586, Poing, Germany
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, JLU Gießen, Ludwigstr. 21, 35390, Gießen, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, 80539, Munich, Germany
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Lena-Christ-Str. 48, 82152, Martinsried, Germany.
| |
Collapse
|
2
|
Lamb HJ, Hayes BJ, Nguyen LT, Ross EM. The Future of Livestock Management: A Review of Real-Time Portable Sequencing Applied to Livestock. Genes (Basel) 2020; 11:E1478. [PMID: 33317066 PMCID: PMC7763041 DOI: 10.3390/genes11121478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Oxford Nanopore Technologies' MinION has proven to be a valuable tool within human and microbial genetics. Its capacity to produce long reads in real time has opened up unique applications for portable sequencing. Examples include tracking the recent African swine fever outbreak in China and providing a diagnostic tool for disease in the cassava plant in Eastern Africa. Here we review the current applications of Oxford Nanopore sequencing in livestock, then focus on proposed applications in livestock agriculture for rapid diagnostics, base modification detection, reference genome assembly and genomic prediction. In particular, we propose a future application: 'crush-side genotyping' for real-time on-farm genotyping for extensive industries such as northern Australian beef production. An initial in silico experiment to assess the feasibility of crush-side genotyping demonstrated promising results. SNPs were called from simulated Nanopore data, that included the relatively high base call error rate that is characteristic of the data, and calling parameters were varied to understand the feasibility of SNP calling at low coverages in a heterozygous population. With optimised genotype calling parameters, over 85% of the 10,000 simulated SNPs were able to be correctly called with coverages as low as 6×. These results provide preliminary evidence that Oxford Nanopore sequencing has potential to be used for real-time SNP genotyping in extensive livestock operations.
Collapse
Affiliation(s)
- Harrison J. Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4067, Australia; (B.J.H.); (L.T.N.); (E.M.R.)
| | | | | | | |
Collapse
|
3
|
Simon R, Lischer HEL, Pieńkowska-Schelling A, Keller I, Häfliger IM, Letko A, Schelling C, Lühken G, Drögemüller C. New genomic features of the polled intersex syndrome variant in goats unraveled by long-read whole-genome sequencing. Anim Genet 2020; 51:439-448. [PMID: 32060960 DOI: 10.1111/age.12918] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 01/19/2023]
Abstract
In domestic goats, the polled intersex syndrome (PIS) refers to XX female-to-male sex reversal associated with the absence of horn growth (polled). The causal variant was previously reported as a 11.7 kb deletion at approximately 129 Mb on chromosome 1 that affects the transcription of both FOXL2 and several long non-coding RNAs. In the meantime the presence of different versions of the PIS deletion was postulated and trials to establish genetic testing with the existing molecular genetic information failed. Therefore, we revisited this variant by long-read whole-genome sequencing of two genetically female (XX) goats, a PIS-affected and a horned control. This revealed the presence of a more complex structural variant consisting of a deletion with a total length of 10 159 bp and an inversely inserted approximately 480 kb-sized duplicated segment of a region located approximately 21 Mb further downstream on chromosome 1 containing two genes, KCNJ15 and ERG. Publicly available short-read whole-genome sequencing data, Sanger sequencing of the breakpoints and FISH using BAC clones corresponding to both involved genome regions confirmed this structural variant. A diagnostic PCR was developed for simultaneous genotyping of carriers for this variant and determination of their genetic sex. We showed that the variant allele was present in all 334 genotyped polled goats of diverse breeds and that all analyzed 15 PIS-affected XX goats were homozygous. Our findings enable for the first time a precise genetic diagnosis for polledness and PIS in goats and add a further genomic feature to the complexity of the PIS phenomenon.
Collapse
Affiliation(s)
- R Simon
- Institute of Animal Breeding and Genetics, Justus Liebig University, Giessen, 35390, Germany
| | - H E L Lischer
- Interfaculty Bioinformatics Unit, University of Bern, Bern, 3001, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - A Pieńkowska-Schelling
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland.,Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zürich, Zürich, 8057, Switzerland
| | - I Keller
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland.,Department for BioMedical Research, University of Bern, Bern, 3001, Switzerland
| | - I M Häfliger
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - A Letko
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| | - C Schelling
- Clinic of Reproductive Medicine, Vetsuisse Faculty, University of Zürich, Zürich, 8057, Switzerland
| | - G Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University, Giessen, 35390, Germany
| | - C Drögemüller
- Institute of Genetics, University of Bern, Bern, 3001, Switzerland
| |
Collapse
|
4
|
Hayes BJ, Daetwyler HD. 1000 Bull Genomes Project to Map Simple and Complex Genetic Traits in Cattle: Applications and Outcomes. Annu Rev Anim Biosci 2019; 7:89-102. [PMID: 30508490 DOI: 10.1146/annurev-animal-020518-115024] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 1000 Bull Genomes Project is a collection of whole-genome sequences from 2,703 individuals capturing a significant proportion of the world's cattle diversity. So far, 84 million single-nucleotide polymorphisms (SNPs) and 2.5 million small insertion deletions have been identified in the collection, a very high level of genetic diversity. The project has greatly accelerated the identification of deleterious mutations for a range of genetic diseases, as well as for embryonic lethals. The rate of identification of causal mutations for complex traits has been slower, reflecting the typically small effect size of these mutations and the fact that many are likely in as-yet-unannotated regulatory regions. Both the deleterious mutations that have been identified and the mutations associated with complex trait variation have been included in low-cost SNP array designs, and these arrays are being genotyped in tens of thousands of dairy and beef cattle, enabling management of deleterious mutations in these populations as well as genomic selection.
Collapse
Affiliation(s)
- Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, Queensland 4067, Australia; .,Agriculture Victoria Research, AgriBio, Bundoora, Victoria 3083, Australia
| | - Hans D Daetwyler
- Agriculture Victoria Research, AgriBio, Bundoora, Victoria 3083, Australia.,School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| |
Collapse
|
5
|
Usai MG, Casu S, Sechi T, Salaris SL, Miari S, Sechi S, Carta P, Carta A. Mapping genomic regions affecting milk traits in Sarda sheep by using the OvineSNP50 Beadchip and principal components to perform combined linkage and linkage disequilibrium analysis. Genet Sel Evol 2019; 51:65. [PMID: 31744455 PMCID: PMC6862840 DOI: 10.1186/s12711-019-0508-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/05/2019] [Indexed: 02/01/2023] Open
Abstract
Background The detection of regions that affect quantitative traits (QTL), to implement selection assisted by molecular information, remains of particular interest in dairy sheep for which genetic gain is constrained by the high costs of large-scale phenotype and pedigree recording. QTL detection based on the combination of linkage disequilibrium and linkage analysis (LDLA) is the most suitable approach in family-structured populations. The main issue in performing LDLA mapping is the handling of the identity-by-descent (IBD) probability matrix. Here, we propose the use of principal component analysis (PCA) to perform LDLA mapping for milk traits in Sarda dairy sheep. Methods A resource population of 3731 ewes belonging to 161 sire families and genotyped with the OvineSNP50 Beadchip was used to map genomic regions that affect five milk traits. The paternally and maternally inherited gametes of genotyped individuals were reconstructed and IBD probabilities between them were defined both at each SNP position and at the genome level. A QTL detection model fitting fixed effects of principal components that summarize IBD probabilities was tested at each SNP position. Genome-wide (GW) significance thresholds were determined by within-trait permutations. Results PCA resulted in substantial dimensionality reduction, in fact 137 and 32 (on average) principal components were able to capture 99% of the IBD variation at the locus and genome levels, respectively. Overall, 2563 positions exceeded the 0.05 GW significance threshold for at least one trait, which clustered into 75 QTL regions most of which affected more than one trait. The strongest signal was obtained for protein content on Ovis aries (OAR) chromosome 6 and overlapped with the region that harbours the casein gene cluster. Additional interesting positions were identified on OAR4 for fat content and on OAR11 for the three yield traits. Conclusions PCA is a good strategy to summarize IBD probabilities. A large number of regions associated to milk traits were identified. The outputs provided by the proposed method are useful for the selection of candidate genes, which need to be further investigated to identify causative mutations or markers in strong LD with them for application in selection programs assisted by molecular information.
Collapse
Affiliation(s)
- Mario Graziano Usai
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sara Casu
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy.
| | - Tiziana Sechi
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sotero L Salaris
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Sabrina Miari
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Stefania Sechi
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Patrizia Carta
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| | - Antonello Carta
- Genetics and Biotechnology-Agris Sardegna, Loc. Bonassai S.S. 291 Sassari-Fertilia - Km. 18.600, 07100, Sassari, Italy
| |
Collapse
|
6
|
Küttel L, Letko A, Häfliger IM, Signer‐Hasler H, Joller S, Hirsbrunner G, Mészáros G, Sölkner J, Flury C, Leeb T, Drögemüller C. A complex structural variant at the
KIT
locus in cattle with the Pinzgauer spotting pattern. Anim Genet 2019; 50:423-429. [DOI: 10.1111/age.12821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 11/28/2022]
Affiliation(s)
- L. Küttel
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - A. Letko
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - I. M. Häfliger
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - H. Signer‐Hasler
- School of Agricultural, Forest and Food Sciences HAFL Bern University of Applied Sciences 3052 Zollikofen Switzerland
| | - S. Joller
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - G. Hirsbrunner
- Clinic for Ruminants Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - G. Mészáros
- Division of Livestock Sciences University of Natural Resources and Life Sciences Vienna 1180Vienna Austria
| | - J. Sölkner
- Division of Livestock Sciences University of Natural Resources and Life Sciences Vienna 1180Vienna Austria
| | - C. Flury
- School of Agricultural, Forest and Food Sciences HAFL Bern University of Applied Sciences 3052 Zollikofen Switzerland
| | - T. Leeb
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| | - C. Drögemüller
- Institute of Genetics, Vetsuisse Faculty University of Bern 3001 Bern Switzerland
| |
Collapse
|