1
|
Wang SZ, Wang MD, Wang JY, Yuan M, Li YD, Luo PT, Xiao F, Li H. Genome-wide association study of growth curve parameters reveals novel genomic regions and candidate genes associated with metatarsal bone traits in chickens. Animal 2024; 18:101129. [PMID: 38574453 DOI: 10.1016/j.animal.2024.101129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
The growth and development of chicken bones have an enormous impact on the health and production performance of chickens. However, the development pattern and genetic regulation of the chicken skeleton are poorly understood. This study aimed to evaluate metatarsal bone growth and development patterns in chickens via non-linear models, and to identify the genetic determinants of metatarsal bone traits using a genome-wide association study (GWAS) based on growth curve parameters. Data on metatarsal length (MeL) and metatarsal circumference (MeC) were obtained from 471 F2 chickens (generated by crossing broiler sires, derived from a line selected for high abdominal fat, with Baier layer dams) at 4, 6, 8, 10, and 12 weeks of age. Four non-linear models (Gompertz, Logistic, von Bertalanffy, and Brody) were used to fit the MeL and MeC growth curves. Subsequently, the estimated growth curve parameters of the mature MeL or MeC (A), time-scale parameter (b), and maturity rate (K) from the non-linear models were utilized as substitutes for the original bone data in GWAS. The Logistic and Brody models displayed the best goodness-of-fit for MeL and MeC, respectively. Single-trait and multi-trait GWASs based on the growth curve parameters of the Logistic and Brody models revealed 4 618 significant single nucleotide polymorphisms (SNPs), annotated to 332 genes, associated with metatarsal bone traits. The majority of these significant SNPs were located on Gallus gallus chromosome (GGA) 1 (167.433-176.318 Mb), GGA2 (96.791-103.543 Mb), GGA4 (65.003-83.104 Mb) and GGA6 (64.685-95.285 Mb). Notably, we identified 12 novel GWAS loci associated with chicken metatarsal bone traits, encompassing 35 candidate genes. In summary, the combination of single-trait and multi-trait GWASs based on growth curve parameters uncovered numerous genomic regions and candidate genes associated with chicken bone traits. The findings benefit an in-depth understanding of the genetic architecture underlying metatarsal growth and development in chickens.
Collapse
Affiliation(s)
- S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - M D Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - J Y Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - M Yuan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - P T Luo
- Fujian Sunnzer Biotechnology Development Co. Ltd, Guangze, Fujian Province 354100, PR China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co. Ltd, Guangze, Fujian Province 354100, PR China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Yue Q, Chen Y, Chen H, Zhou R. Transcriptome profile reveals novel candidate genes associated with bone strength in end-of-lay hens. Anim Biotechnol 2023; 34:3099-3107. [PMID: 36309812 DOI: 10.1080/10495398.2022.2134884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bone weakness causes many problems such as osteoporosis, bone fractures, and economic loss, especially at the late stage of lay, in laying hen production. However, the genetic factors and molecular mechanism affecting the bone strength is still largely unknown. To elucidate the molecular mechanism and genetic factors affecting bone strength, a total of six cDNA libraries were constructed and used to compare genetic differences between tibia with higher(Group HBS)and lower(Group LBS)breaking strength in Hyline grey layers. A comparison between Groups HBS and LBS revealed nine differentially expressed genes, of which five were upregulated and four were downregulated in the LBS relative to the HBS in tibia. Our results showed novel candidate genes concerned with bone strength in the late laying period. These include transcription factor paired box protein Pax-5 (Pax5), tissue inhibitor of Metallopoteinase-4 (TIMP4), Kelch-like protein 14 (KLHL14), predicted MAGUK p55 subfamily member 7 isoform X4 (MPP7) and Osteoclast-associated Ig-like receptor (OSCAR). Our data provide a vital resource for discovering important candidate genes associated with bone strength and will help further study the molecular mechanisms for bone remodeling.
Collapse
Affiliation(s)
- Qiaoxian Yue
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Ye Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Hui Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Rongyan Zhou
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Steinerova M, Horecky C, Knoll A, Nedomova S, Slama P, Pavlik A. Study of genes polymorphisms in RANK/RANKL/OPG and WNT signaling pathways and their associations with bone parameters in broiler chicken. Heliyon 2023; 9:e22371. [PMID: 38053912 PMCID: PMC10694325 DOI: 10.1016/j.heliyon.2023.e22371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 09/22/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023] Open
Abstract
Limb problems are one of the most common problems with fast-growing meat-type chickens. Various bone abnormalities, which can lead to limping, bone weakness, or even fractures, bring overall discomfort to birds and a loss of production. Genetic aspects are often associated with these side effects on bone stability and are also cited as the dominant cause. These points to a close negative relationship of genetic selection for rapid growth with traits involved in bone integrity. Due to the assumption of an additive genetic background, improvements through genetic tools can be used. Our study is focused on selected genes of important signaling pathways for bone metabolism. We tried to detect polymorphisms that would show associations with selected bone parameters in a total of 48 broilers. Those were fast-growing Ross 308 hybrids and slow-growing Hubbard M22BxJA87A hybrids. The TNFRSF11A and WISP1 genes were tested. A total of fourteen polymorphisms were found, three of them were synonymous and five in the intron. In the case of four polymorphisms found in exons of the TNFRSF11A gene (c.11G > T, c.31G > A, c.37C > G, c.514G > A), associations with the observed bone parameters (bone strength, bone dimensions and bone mass) were demonstrated. The genetic architecture of bone traits is not fully understood, therefore the present study and the knowledge gained can help to increase the potential in poultry breeding processes and thus reduce the death of individuals.
Collapse
Affiliation(s)
- Michala Steinerova
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1/1665, 613 00, Brno, Czech Republic
| | - Cenek Horecky
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1/1665, 613 00, Brno, Czech Republic
| | - Ales Knoll
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1/1665, 613 00, Brno, Czech Republic
| | - Sarka Nedomova
- Department of Food Technology, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1/1665, 613 00, Brno, Czech Republic
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1/1665, 613 00, Brno, Czech Republic
| | - Ales Pavlik
- Department of Animal Morphology, Physiology and Genetics, Mendel University in Brno, Faculty of AgriSciences, Zemedelska 1/1665, 613 00, Brno, Czech Republic
| |
Collapse
|
4
|
Sallam M, Wilson PW, Andersson B, Schmutz M, Benavides C, Dominguez-Gasca N, Sanchez-Rodriguez E, Rodriguez-Navarro AB, Dunn IC, De Koning DJ, Johnsson M. Genetic markers associated with bone composition in Rhode Island Red laying hens. Genet Sel Evol 2023; 55:44. [PMID: 37386416 DOI: 10.1186/s12711-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Bone damage has welfare and economic impacts on modern commercial poultry and is known as one of the major challenges in the poultry industry. Bone damage is particularly common in laying hens and is probably due to the physiological link between bone and the egg laying process. Previous studies identified and validated quantitative trait loci (QTL) for bone strength in White Leghorn laying hens based on several measurements, including bone composition measurements on the cortex and medulla of the tibia bone. In a previous pedigree-based analysis, bone composition measurements showed heritabilities ranging from 0.18 to 0.41 and moderate to strong genetic correlations with tibia strength and density. Bone composition was measured using infrared spectroscopy and thermogravimetry. The aim of this study was to combine these bone composition measurements with genotyping data via a genome-wide association study (GWAS) to investigate genetic markers that contribute to genetic variance in bone composition in Rhode Island Red laying hens. In addition, we investigated the genetic correlations between bone composition and bone strength. RESULTS We found novel genetic markers that are significantly associated with cortical lipid, cortical mineral scattering, medullary organic matter, and medullary mineralization. Composition of the bone organic matter showed more significant associations than bone mineral composition. We also found interesting overlaps between the GWAS results for tibia composition traits, particularly for cortical lipid and tibia strength. Bone composition measurements by infrared spectroscopy showed more significant associations than thermogravimetry measurements. Based on the results of infrared spectroscopy, cortical lipid showed the highest genetic correlations with tibia density, which was negative (- 0.20 ± 0.04), followed by cortical CO3/PO4 (0.18 ± 0.04). Based on the results of thermogravimetry, medullary organic matter% and mineral% showed the highest genetic correlations with tibia density (- 0.25 ± 0.04 and 0.25 ± 0.04, respectively). CONCLUSIONS This study detected novel genetic associations for bone composition traits, particularly those involving organic matter, that could be used as a basis for further molecular genetic investigations. Tibia cortical lipids displayed the strongest genetic associations of all the composition measurements, including a significantly high genetic correlation with tibia density and strength. Our results also highlighted that cortical lipid may be a key measurement for further avian bone studies.
Collapse
Affiliation(s)
- Moh Sallam
- Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden.
| | - Peter W Wilson
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | | | - Cristina Benavides
- Departamento de Mineralogia y Petrologia, Universidad de Granada, 18002, Granada, Spain
| | | | | | | | - Ian C Dunn
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, Scotland, UK
| | | | - Martin Johnsson
- Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden
| |
Collapse
|
5
|
Brown CLJ, Zaytsoff SJM, Iwaniuk AN, Metz GAS, Montina T, Inglis GD. Comparative Analysis of the Temporal Impacts of Corticosterone and Simulated Production Stressors on the Metabolome of Broiler Chickens. Metabolites 2023; 13:metabo13020144. [PMID: 36837763 PMCID: PMC9961940 DOI: 10.3390/metabo13020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023] Open
Abstract
The impact of physiological stress on the metabolome of breast muscle, liver, kidney, and hippocampus was investigated in Ross 308 broiler chicks. Simulated on-farm stressors were compared to a corticosterone model of physiological stress. The three different stressors investigated were: (i) corticosterone at a dose of 15 mg/kg of feed; (ii) heat treatment of 36 °C and 40% RH for 8 h per day; and (iii) isolation for 1 h per day. Liver, kidney, breast muscle, and hippocampus samples were taken after 2, 4, 6, and 8 days of stress treatment, and subjected to untargeted 1H-nuclear magnetic resonance (NMR) spectroscopy-based metabolomic analysis to provide insights on how stress can modulate metabolite profiles and biomarker discovery. Many of the metabolites that were significantly altered in tissues were amino acids, with glycine and alanine showing promise as candidate biomarkers of stress. Corticosterone was shown to significantly alter alanine, aspartate, and glutamate metabolism in the liver, breast, and hippocampus, while isolation altered the same pathways, but only in the kidneys and hippocampus. Isolation also significantly altered the glycine, serine, and threonine metabolism pathway in the liver and breast, while the same pathway was significantly altered by heat in the liver, kidneys, and hippocampus. The study's findings support corticosterone as a model of stress. Moreover, a number of potential metabolite biomarkers were identified in chicken tissues, which may allow producers to effectively monitor stress and to objectively develop and evaluate on-farm mitigations, including practices that reduce stress and enhance bird health.
Collapse
Affiliation(s)
- Catherine L. J. Brown
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Sarah J. M. Zaytsoff
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
| | - Andrew N. Iwaniuk
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A. S. Metz
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tony Montina
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Correspondence: (T.M.); (G.D.I.); Tel.: +1-403-394-3927 (T.M.); +1-403-360-7975 (G.D.I.)
| | - G. Douglas Inglis
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada
- Correspondence: (T.M.); (G.D.I.); Tel.: +1-403-394-3927 (T.M.); +1-403-360-7975 (G.D.I.)
| |
Collapse
|
6
|
Han G, Kim J, Kim JM, Kil D. Transcriptomic analysis of the liver in aged laying hens with different eggshell strength. Poult Sci 2022; 102:102217. [PMID: 36343436 PMCID: PMC9646969 DOI: 10.1016/j.psj.2022.102217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Eggshell is composed of a very ordered and mineralized structure and is important for egg quality. Eggshell strength is particularly important because of its direct association with economic outcomes and egg safety. Various factors related to laying hens and their environment affects eggshell strength. However, the molecular mechanisms of liver functions related to decreased eggshell strength of aged laying hens are largely unknown. Therefore, this study aimed to identify potential factors affecting eggshell strength in aged laying hens at the hepatic transcriptomic level. A total of five hundred 92-wk-old Hy-line Brown laying hens were screened to select those exhibiting the greatest variation in eggshell strength. Based on the final eggshell strength, 12 hens producing eggs with strong eggshell strength (SES) and weak eggshell strength (WES) were finally selected (n = 6) for liver tissue sampling. The RNA-sequencing was performed to identify differentially expressed genes (DEGs) between the 2 groups. We identified a total of 2,084 DEGs, of which 1,358 genes were upregulated and 726 genes were downregulated in the WES group compared with SES group. According to the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, the DEGs indicated the mammalian target of rapamycin signaling pathway, the Janus kinase-signal transducer and activator of transcription pathway, the mitogen‑activated protein kinase signaling pathway, and the insulin resistance pathways. Genes related to fatty liver disease were upregulated in WES group compared with SES group. In addition, expression of several genes associated with oxidative stress and bone resorption activity was altered in aged laying hens with different eggshell strength. Overall, these findings contribute to the identification of genes involved in different intensity of eggshell strength, enabling more understanding of the hepatic molecular mechanism underlying in decreased eggshell strength of aged laying hens.
Collapse
|
7
|
Li YD, Liu X, Li ZW, Wang WJ, Li YM, Cao ZP, Luan P, Xiao F, Gao HH, Guo HS, Wang N, Li H, Wang SZ. A combination of genome-wide association study and selection signature analysis dissects the genetic architecture underlying bone traits in chickens. Animal 2021; 15:100322. [PMID: 34311193 DOI: 10.1016/j.animal.2021.100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 01/01/2023] Open
Abstract
The bones of chicken play an important role in supporting and protecting the body. The growth and development of bones have a substantial influence on the health and production performance in chickens. However, genetic architecture underlying chicken bone traits is not well understood. The objectives of this study are to dissect the genetic basis of bone traits in chickens and to identify valuable genes and genetic markers for chicken breeding. We performed a combination of genome-wide association study (GWAS) and selection signature analysis (fixation index values and nucleotide diversity ratios) in an F2 crossbred experimental population with different genetic backgrounds (broiler × layer) to identify candidate genes and significant variants related to femur, shank, keel length, chest width, metatarsal claw weight, metatarsal length, and metatarsal circumference. A total of 545 individuals were genotyped based on the whole genome re-sequencing method (26 F0 individuals were re-sequenced at 10 × coverage; 519 F2 individuals were re-sequenced at 3 × coverage). A total of 2 028 112 single-nucleotide polymorphisms (SNPs) remained to carry out analysis after quality control and imputation. The integration of GWAS and selection signature analysis indicated that all significant SNPs responsible for bone traits were mainly localized on chicken chromosomes 1, 4, and 27. Finally, we identified 21 positional candidate genes that might regulate chicken bone growth and development, including LRCH1, RB1, FNDC3A, MLNR, CAB39L, FOXO1, LHFP, TRPC4, POSTN, SMAD9, RBPJ, PPARGC1A, SLIT2, NCAPG, NKX3-2, CPZ, SPOP, NGFR, SOST, ZNF652, and HOXB3. Additionally, an array of uncharacterized genes was identified. The findings provide an in-depth understanding of the genetic architecture of chicken bone traits and offer a molecular basis for applying genomics in practical chicken breeding.
Collapse
Affiliation(s)
- Y D Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - X Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Z W Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - W J Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Y M Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Z P Cao
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - P Luan
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - F Xiao
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - H H Gao
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - H S Guo
- Fujian Sunnzer Biotechnology Development Co., Ltd, Guangze, Fujian Province 354100, PR China
| | - N Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - H Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - S Z Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Jansen S, Baulain U, Habig C, Ramzan F, Schauer J, Schmitt AO, Scholz AM, Sharifi AR, Weigend A, Weigend S. Identification and Functional Annotation of Genes Related to Bone Stability in Laying Hens Using Random Forests. Genes (Basel) 2021; 12:702. [PMID: 34066823 PMCID: PMC8151682 DOI: 10.3390/genes12050702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/20/2022] Open
Abstract
Skeletal disorders, including fractures and osteoporosis, in laying hens cause major welfare and economic problems. Although genetics have been shown to play a key role in bone integrity, little is yet known about the underlying genetic architecture of the traits. This study aimed to identify genes associated with bone breaking strength and bone mineral density of the tibiotarsus and the humerus in laying hens. Potentially informative single nucleotide polymorphisms (SNP) were identified using Random Forests classification. We then searched for genes known to be related to bone stability in close proximity to the SNPs and identified 16 potential candidates. Some of them had human orthologues. Based on our findings, we can support the assumption that multiple genes determine bone strength, with each of them having a rather small effect, as illustrated by our SNP effect estimates. Furthermore, the enrichment analysis showed that some of these candidates are involved in metabolic pathways critical for bone integrity. In conclusion, the identified candidates represent genes that may play a role in the bone integrity of chickens. Although further studies are needed to determine causality, the genes reported here are promising in terms of alleviating bone disorders in laying hens.
Collapse
Affiliation(s)
- Simon Jansen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Ulrich Baulain
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Christin Habig
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Faisal Ramzan
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
| | - Jens Schauer
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany; (F.R.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| | - Armin Manfred Scholz
- Livestock Center of the Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, 85764 Oberschleissheim, Germany;
| | - Ahmad Reza Sharifi
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
- Animal Breeding and Genetics Group, Department of Animal Sciences, University of Göttingen, 37075 Göttingen, Germany
| | - Annett Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
| | - Steffen Weigend
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt, Germany; (U.B.); (C.H.); (J.S.); (A.W.); (S.W.)
- Center for Integrated Breeding Research (CiBreed), University of Göttingen, 37075 Göttingen, Germany;
| |
Collapse
|
9
|
Maidin MBM, McCormack HA, Wilson PW, Caughey SD, Whenham N, Dunn IC. Dietary betaine reduces plasma homocysteine concentrations and improves bone strength in laying hens. Br Poult Sci 2021; 62:573-578. [PMID: 33541116 DOI: 10.1080/00071668.2021.1883550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
1. This study tested the hypothesis that the methyl-donor properties of betaine could reduce homocysteine concentrations, which has been recognised in a previous genetics study to be linked to bone quality. This was combined with phytase treatment, as phosphorus is critical for bone mineralisation.2. Using a 2 × 2 factorial arrangement, a total of 1920 Lohmann LSL-lite chickens housed as 24 replicates of 20 chickens were fed one of four diets containing dietary betaine (0 or 1000 mg/kg) and phytase (300 or 1000 FTU/kg) from one day old until end-of-lay. Blood and bone samples were collected at 45 and 70 weeks of age.3. Hens fed betaine had lower plasma homocysteine level (P < 0.05), higher tibia breaking strength (P < 0.05) and higher tibia bone density (P < 0.05).4. Egg production and quality was excellent throughout the study and were not affected by the dietary treatments.5. The addition of dietary betaine was successful at reducing plasma homocysteine concentrations and improving bone strength in laying hens, which could be used as an intervention to alleviate welfare concerns.
Collapse
Affiliation(s)
- M B M Maidin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - H A McCormack
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - P W Wilson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - S D Caughey
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| | - N Whenham
- Research and Development, AB Vista, Marlborough, UK
| | - I C Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
10
|
Alfonso-Carrillo C, Benavides-Reyes C, de los Mozos J, Dominguez-Gasca N, Sanchez-Rodríguez E, Garcia-Ruiz AI, Rodriguez-Navarro AB. Relationship between Bone Quality, Egg Production and Eggshell Quality in Laying Hens at the End of an Extended Production Cycle (105 Weeks). Animals (Basel) 2021; 11:623. [PMID: 33652961 PMCID: PMC7996911 DOI: 10.3390/ani11030623] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Nowadays the industry aims to improve lay persistency for extended cycles (100 weeks or longer) to make egg production more sustainable. However, intensive egg production challenges hen health, inducing severe osteoporosis and the incidence of bone fractures. In this study, the relationship between bone quality and egg production, and/or eggshell quality, was evaluated at the end of an extended laying cycle of 100 weeks, comparing groups of hens with different production and eggshell quality parameters; (2) Methods: Quality parameters of egg (as weight, egg white height), eggshell (as thickness, weight, breaking strength, elasticity and microstructure) and tibiae bone (weight, diameter, cortical thickness, ash weight, breaking strength, medullary bone) were determined; (3) Results: Hens from groups with a high egg production and good eggshell quality have poorer bone quality (lower ash weight and lesser amount of medullary bone). However, Pearson's correlation analysis shows no clear relationship between bone and egg/eggshell parameters. (4) Conclusions: Bone and egg production/eggshell quality are independent and can be improved separately. Medullary bone has an important contribution to bone mechanical properties, being important to accumulate enough bone medullary bone early in life to maintain skeletal integrity and eggshell quality in old hens.
Collapse
Affiliation(s)
- Clara Alfonso-Carrillo
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, 45950 Toledo, Spain; (C.A.-C.); (J.d.l.M.)
| | - Cristina Benavides-Reyes
- Departamento de Mineralogía y Petrología, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (N.D.-G.); (E.S.-R.)
| | - Jon de los Mozos
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, 45950 Toledo, Spain; (C.A.-C.); (J.d.l.M.)
| | - Nazaret Dominguez-Gasca
- Departamento de Mineralogía y Petrología, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (N.D.-G.); (E.S.-R.)
| | - Estefanía Sanchez-Rodríguez
- Departamento de Mineralogía y Petrología, Universidad de Granada, 18002 Granada, Spain; (C.B.-R.); (N.D.-G.); (E.S.-R.)
| | - Ana Isabel Garcia-Ruiz
- Trouw Nutrition R&D, Ctra. CM 4004, km 10.5, Casarrubios del Monte, 45950 Toledo, Spain; (C.A.-C.); (J.d.l.M.)
| | | |
Collapse
|
11
|
Dunn IC, De Koning DJ, McCormack HA, Fleming RH, Wilson PW, Andersson B, Schmutz M, Benavides C, Dominguez-Gasca N, Sanchez-Rodriguez E, Rodriguez-Navarro AB. No evidence that selection for egg production persistency causes loss of bone quality in laying hens. Genet Sel Evol 2021; 53:11. [PMID: 33541269 PMCID: PMC7860618 DOI: 10.1186/s12711-021-00603-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/13/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The physiological adaptations that have evolved for egg laying make hens susceptible to bone fractures and keel bone damage. In modern laying hen breeds, longer periods of egg laying could result in a greater risk of poor bone quality, and selection for increased egg production has frequently been stated to be a cause. However, the existing literature does not support this hypothesis. To test the hypothesis that egg production is associated with quality, breaking strength and density of bone, genetic correlations between these traits were estimated in White Leghorn and Rhode Island Red breeds. Genetic correlations of cortical and medullary bone material chemical properties with bone quality were also estimated, in order to identify methods to improve bone quality with appropriately targeted measurement of key traits. RESULTS Estimates of heritability for bone quality traits were moderate (0.19-0.59) for both White Leghorn and Rhode Island Red breeds, except for the keel bone trait, which had a heritability estimate equal to zero. There was no evidence for genetic or phenotypic relationships between post-peak egg production and bone quality. In the White Leghorn breed, the estimate of the genetic correlation between pre-peak production/age at first egg and bone quality was significant and negative (- 0.7 to - 0.4). Estimates of heritability of thermogravimetric measurements of tibial medullary bone mineralisation were significant (0.18-0.41), as were estimates of their genetic correlations with tibia breaking strength and density (0.6-0.9). CONCLUSIONS The low genetic correlation of post-peak egg production with bone quality suggests that selection for increased persistency of egg production may not adversely affect bone quality. Onset of puberty and mineralisation of the medullary bone, which is a specialised adaptation for egg laying, were identified as important factors associated with the quality of the skeleton later during egg production. These are traits for which genetic, as well as environmental and management factors can positively impact the overall quality of the skeleton of laying hens.
Collapse
Affiliation(s)
- Ian C. Dunn
- The Roslin Institute, University of Edinburgh, EH25 9RG Edinburgh, Scotland, UK
| | | | | | - Robert H. Fleming
- The Roslin Institute, University of Edinburgh, EH25 9RG Edinburgh, Scotland, UK
| | - Peter W. Wilson
- The Roslin Institute, University of Edinburgh, EH25 9RG Edinburgh, Scotland, UK
| | | | | | - Cristina Benavides
- Departamento de Mineralogía Y Petrologia, Universidad de Granada, 18002 Granada, Spain
| | | | | | | |
Collapse
|
12
|
Poyatos Pertiñez S, Wilson PW, Icken W, Cavero D, Bain MM, Jones AC, Dunn IC. Transcriptome analysis of the uterus of hens laying eggs differing in cuticle deposition. BMC Genomics 2020; 21:516. [PMID: 32718314 PMCID: PMC7385972 DOI: 10.1186/s12864-020-06882-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023] Open
Abstract
Background Avian eggs have a proteinaceous cuticle. The quantity of cuticle varies and the deposition of a good cuticle in the uterus (Shell-gland) prevents transmission of bacteria to the egg contents. Results To understand cuticle deposition, uterus transcriptomes were compared between hens with i) naturally good and poor cuticle and, ii) where manipulation of the hypothalamo-pituitary-gonadal-oviduct axis produced eggs with or without cuticle. The highest expressed genes encoded eggshell matrix and cuticle proteins, e.g. MEPE (OC-116), BPIFB3 (OVX-36), RARRES1 (OVX-32), WAP (OVX-25), and genes for mitochondrial oxidative phosphorylation, active transport and energy metabolism. Expression of a number of these genes differed between hens laying eggs with or without cuticle. There was also a high expression of clock genes. PER2, CRY2, CRY1, CLOCK and BMAL1 were differentially expressed when cuticle deposition was prevented, and they also changed throughout the egg formation cycle. This suggests an endogenous clock in the uterus may be a component of cuticle deposition control. Cuticle proteins are glycosylated and glycosaminoglycan binding genes had a lower expression when cuticle proteins were deposited on the egg. The immediate early genes, JUN and FOS, were expressed less when the cuticle had not been deposited and changed over the egg formation cycle, suggesting they are important in oviposition and cuticle deposition. The uterus transcriptome of hens with good and poor cuticle deposition did not differ. Conclusions We have gained insights into the factors that can affect the production of the cuticle especially clock genes and immediate early genes. We have demonstrated that these genes change their expression over the period of eggshell formation supporting their importance. The lack of differences in expression between the uterus of hens laying eggs with the best and worse cuticle suggest the genetic basis of the trait may lie outside the oviduct.
Collapse
Affiliation(s)
- Sandra Poyatos Pertiñez
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK.
| | - Peter W Wilson
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK
| | | | | | - Maureen M Bain
- College of Medical, Veterinary and Life Sciences (MVLS), IBAHCM, University of Glasgow, Glasgow, Scotland, UK
| | - Anita C Jones
- School of Chemistry, University of Edinburgh, Joseph Black Building, Edinburgh, Scotland, UK
| | - Ian C Dunn
- The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, Scotland, UK
| |
Collapse
|