1
|
Srikanth K, Jaafar MA, Neupane M, Ben Zaabza H, McKay SD, Wolfe CW, Metzger JS, Huson HJ, Van Tassell CP, Blackburn HD. Assessment of genetic diversity, inbreeding and collection completeness of Jersey bulls in the US National Animal Germplasm Program. J Dairy Sci 2024:S0022-0302(24)01152-4. [PMID: 39343205 DOI: 10.3168/jds.2024-25032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024]
Abstract
Genomic selection and extensive use of a few elite bulls through artificial insemination are leading to reduced genetic diversity in Jersey cattle. Conservation of genetic diversity through gene banks can protect a breed's genetic diversity and genetic gain, ensuring continued genetic advancement in the future. The availability of genomic information in the US National Animal Germplasm Program (NAGP) facilitates characterization of Jersey bulls in the germplasm collection. Therefore, in this study, we compared the genetic diversity and inbreeding between Jersey bulls in the NAGP and the national cooperator database (NCD). The NCD is maintained and curated by the Council on Dairy Cattle Breeding (CDCB). We found the genetic diversity to be marginally higher in NAGP (Ho = 0.34 ± 0.17) relative to the NCD population (Ho = 0.33 ± 0.16). The average pedigree and genomic inbreeding (FPED, FGRM, FROH > 2Mb) were similar between the groups, with estimates of 7.6% with FPED, 11.07% with FGRM and 20.13% with FROH > 2Mb. An increasing trend in inbreeding was detected, and a significantly higher level of inbreeding was estimated among the older bulls in the NAGP collection, suggesting an overrepresentation of the genetics from elite bulls. Results from principal component analyses (PCA) provided evidence that the NAGP collection is representative of the genetic variation found in the NCD population and a broad majority of the loci segregating (98.2%) in the NCD population were also segregating in the NAGP. Ward's clustering was used to assess collection completeness of Jerseys in the NAGP by comparison with top 1000 sires of bulls, top 1000 sires of cow, and bulls with high Lifetime Net Merit (NM$). All the clusters were represented in the NAGP suggesting that most of the genetic diversity in the US Jersey population is represented in the NAGP and confirmed the PCA results. The decade of birth was the major driver grouping bulls into clusters, suggesting the importance of selection over time. Selection signature analysis between the historic bulls in the NAGP with the newer bulls, born in the decade after implementation of genomic selection, identified selection for milk production, fat and protein yield, fertility, health, and reproductive traits. Cluster analysis revealed that the NAGP has captured allele frequency changes over time associated with selection, validating the strategy of repeated sampling and suggests that the continuation of a repeated sampling policy is essential for the germplasm collection to maintain its future utility. While NAGP should continue to collect bulls that have large influence on the population due to selection, care should be taken to include the entire breadth of bulls, including low merit bulls.
Collapse
Affiliation(s)
- K Srikanth
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - M A Jaafar
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - M Neupane
- Animal Genomics and Improvement, ARS, USDA, Beltsville, MD 20705
| | - H Ben Zaabza
- Department of Animal Science, Michigan State, East Lansing, MI, 48824
| | - S D McKay
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211
| | - C W Wolfe
- American Jersey Cattle Association, Reynoldsburg, OH 43068
| | - J S Metzger
- American Jersey Cattle Association, Reynoldsburg, OH 43068
| | - H J Huson
- Department of Animal Science, Cornell University, Ithaca, NY, 14853
| | - C P Van Tassell
- Animal Genomics and Improvement, ARS, USDA, Beltsville, MD 20705
| | - H D Blackburn
- National Animal Germplasm Program, USDA, Fort Collins, CO 80521.
| |
Collapse
|
2
|
Ayalew W, Wu X, Tarekegn GM, Sisay Tessema T, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Edea Z, Chu M, Enquahone S, Liang C, Yan P. Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle. Int J Mol Sci 2024; 25:6142. [PMID: 38892330 PMCID: PMC11172929 DOI: 10.3390/ijms25116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three selective sweep detection methods (ZFST, θπ ratio, and ZHp) to identify candidate genes associated with milk production and composition traits. Notably, ACAA1, P4HTM, and SLC4A4 were consistently identified by all methods. Functional annotation highlighted their roles in crucial biological processes such as fatty acid metabolism, mammary gland development, and milk protein synthesis. These findings contribute to understanding the genetic basis of milk production in Barka cattle, presenting opportunities for enhancing dairy cattle production in tropical climates. Further validation through genome-wide association studies and transcriptomic analyses is essential to fully exploit these candidate genes for selective breeding and genetic improvement in tropical dairy cattle.
Collapse
Affiliation(s)
- Wondossen Ayalew
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Getinet Mekuriaw Tarekegn
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Scotland’s Rural College (SRUC), Easter Bush Campus, Roslin Institute Building, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Rakan Naboulsi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Tomtebodavägen 18A, 17177 Stockholm, Sweden
| | - Renaud Van Damme
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Zewdu Edea
- Ethiopian Bio and Emerging Technology Institute, Addis Ababa P.O. Box 5954, Ethiopia;
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Solomon Enquahone
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| |
Collapse
|
3
|
Gomez Proto G, Mancin E, Sartori C, Mantovani R. Unraveling inbreeding patterns and selection signals in Alpine Grey cattle. Animal 2024; 18:101159. [PMID: 38718700 DOI: 10.1016/j.animal.2024.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Inbreeding plays a crucial role in livestock breeding, influencing genetic diversity and phenotypic traits. Genomic data have helped address limitations posed by incomplete pedigrees, providing deeper insights into breed genetic diversity. This study assesses inbreeding levels via pedigree and genomic approaches and analyzes old and recent inbreeding using runs of homozygosity (ROH), and selection signals in Alpine Grey cattle. Pedigree data from 165 575 individuals, analyzed with INBUPGF90 software, computed inbreeding coefficients. Genomic-based coefficients derived from PLINK v1.9. or DetectRUNS R package analyses of 1 180 individuals' genotypes. Common single nucleotide polymorphisms within ROH pinpointed genomic regions, aggregating into "ROH islands" indicative of selection pressure. Overlaps with USCS Genome Browser unveiled gene presence. Moderate correlations (0.20-0.54) existed between pedigree and genomic coefficients, with most genomic estimators having higher (>0.8) correlation values. Inbreeding averaged 0.04 in < 8 Mb ROH segments, and 0.03 in > 16 Mb segments; > 90% of ROHs were < 8 Mb, indicating ancient inbreeding prevalence. Recent inbreeding proved less detrimental than in cosmopolitan breeds. Two major ROH islands on chromosomes 6 and 7 harbored genes linked to immune response, disease resistance (PYURF, HERC3), and fertility (EIF4EBP3, SRA1). This study underscores the need for detailed inbreeding analyses to understand genetic characteristics and historical changes in local breeds like Alpine Grey cattle. Genomic insights, especially from ROH, facilitated overcoming pedigree limitations, illuminating breed genetic diversity. Our findings reveal ancient inbreeding's enduring genetic impact and ROH islands potential for selective sweeps, elucidating traits in Alpine Grey cattle.
Collapse
Affiliation(s)
- G Gomez Proto
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy.
| | - E Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - C Sartori
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| | - R Mantovani
- Department of Agronomy, Food, Natural Resources, Animals and Environmet, University of Padua, Viale dell'Università, 16, 35020 Legnaro, Italy
| |
Collapse
|
4
|
Värv S, Põlluäär T, Sild E, Viinalass H, Kaart T. Genetic Variation and Composition of Two Commercial Estonian Dairy Cattle Breeds Assessed by SNP Data. Animals (Basel) 2024; 14:1101. [PMID: 38612340 PMCID: PMC11010984 DOI: 10.3390/ani14071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The aims of this study were to assess the genomic relatedness of Estonian and selected European dairy cattle breeds and to examine the within-breed diversity of two Estonian dairy breeds using genome-wide SNP data. This study was based on a genotyped heifer population of the Estonian Red (ER) and Estonian Holstein (EH) breeds, including about 10% of all female cattle born in 2017-2020 (sample sizes n = 215 and n = 2265, respectively). The within-breed variation study focused on the level of inbreeding using the ROH-based inbreeding coefficient. The genomic relatedness analyses were carried out among two Estonian and nine European breeds from the WIDDE database. Admixture analysis revealed the heterogeneity of ER cattle with a mixed pattern showing several ancestral populations containing a relatively low proportion (1.5-37.0%) of each of the reference populations used. There was a higher FROH in EH (FROH = 0.115) than in ER (FROH = 0.044). Compared to ER, the long ROHs of EH indicated more closely related parents. The paternal origin of the genetic material used in breeding had a low effect on the inbreeding level. However, among EH, the highest genomic inbreeding was estimated in daughters of USA-born sires.
Collapse
Affiliation(s)
- Sirje Värv
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (T.P.); (E.S.); (H.V.)
| | | | | | | | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (T.P.); (E.S.); (H.V.)
| |
Collapse
|
5
|
González-Cano R, González-Martínez A, Ramón M, González Serrano M, Moreno Millán M, Rubio de Juan A, Rodero Serrano E. Exploring the Effects of Robertsonian Translocation 1/29 (Rob (1;29)) on Genetic Diversity in Minor Breeds of Spanish Berrenda Cattle via Genome-Wide Analysis. Animals (Basel) 2024; 14:793. [PMID: 38473178 DOI: 10.3390/ani14050793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/25/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
Most of the previous studies on the genetic variability in Spanish "Berrenda" breeds have been carried out using DNA microsatellites. The present work aimed to estimate the genetic diversity, population structure, and potential genetic differences among individuals of both Berrenda breeds and groups based on the presence of the Robertsonian chromosomal translocation, rob (1;29). A total of 373 samples from animals belonging to the two breeds, including 169 cases diagnosed as rob (1;29)-positive, were genotyped using an SNP50K chip. The genetic diversity at the breed level did not show significant differences, but it was significantly lower in those subpopulations containing the rob (1;29). Runs of homozygosity identified a region of homozygosity on chromosome 6, where the KIT (KIT proto-oncogene, receptor tyrosine kinase) gene, which determines the typical spotted coat pattern in both breeds, is located. The four subpopulations considered showed minor genetic differences. The regions of the genome that most determined the differences between the breeds were observed on chromosomes 4, 6, 18, and 22. The presence of this Robertsonian translocation did not result in sub-structuring within each of the breeds considered. To improve the reproductive performance of Berrenda breeds, it would be necessary to implement strategies considering the involvement of potential breeding stock carrying rob (1;29).
Collapse
Affiliation(s)
- Rafael González-Cano
- Ministry of Agriculture, Fisheries and Food, Paseo Infanta Isabel 1, 28014 Madrid, Spain
- Regional Center of Animal Breeding and Reproduction (CERSYRA-IRIAF), Avenida del Vino 10, 13300 Ciudad Real, Spain
| | - Ana González-Martínez
- Department of Animal Production, Faculty of Veterinary Sciences, University of Cordoba, 14071 Córdoba, Spain
| | - Manuel Ramón
- Department of Animal Breeding and Genetics, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), 28040 Madrid, Spain
| | - Miriam González Serrano
- Department of Animal Production, Faculty of Veterinary Sciences, University of Cordoba, 14071 Córdoba, Spain
| | - Miguel Moreno Millán
- Department of Genetic, Faculty of Veterinary Sciences, University of Cordoba, 14071 Córdoba, Spain
| | - Alejandro Rubio de Juan
- Regional Center of Animal Breeding and Reproduction (CERSYRA-IRIAF), Avenida del Vino 10, 13300 Ciudad Real, Spain
| | - Evangelina Rodero Serrano
- Department of Animal Production, Faculty of Veterinary Sciences, University of Cordoba, 14071 Córdoba, Spain
| |
Collapse
|
6
|
Ameri NF, Moradian H, Koshkoiyeh AE, Montazeri M, Madabi ER, Fozi MA. Genetic diversity and positive signatures of selection in indigenous cattle breeds of Iran. Genome 2024; 67:31-42. [PMID: 37962065 DOI: 10.1139/gen-2022-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Animal domestication, climate changes over time, and artificial selection have played significant roles in shaping the genome structure of various animal species, including cattle. These processes have led to the emergence of several indigenous cattle breeds with distinct genetic characteristics. This study focused on unraveling the genetic diversity and identifying candidate genomic regions in eight indigenous cattle breeds of Iran. The data consisted of ∼777 962 single nucleotide polymorphisms (SNPs) of 89 animals from Iranian indigenous cattle scattered throughout the country. We employed various methods, including integrated haplotype score, FST, and cross-population composite likelihood ratio, to conduct a genome scan for detecting selection signals within and between cattle populations. Average observed heterozygosity across the populations was 0.36, with a range of 0.32-0.40. In addition, negative and low rates of inbreeding (FIS) in the populations were observed. The genome-wide analysis revealed several genomic regions that harbored candidate genes associated with production traits (e.g., MFSD1, TYW5, ADRB2, BLK, and CRTC3), adaptation to local environmental constraints (CACNA2D1, CXCL3, and GRO1), and coat color (DYM). Finally, the study of the reported quantitative trait loci (QTL) regions in the cattle genome demonstrated that the identified regions were associated with QTL related to important traits such as milk composition, body weight, daily gain, feed conversion, and residual feed intake. Overall, this study contributes to a better understanding of the genetic diversity and potential candidate genes underlying important traits in Iranian indigenous cattle breeds, which can inform future breeding and conservation efforts.
Collapse
Affiliation(s)
- Nader Forough Ameri
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hasan Moradian
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Mahdiyeh Montazeri
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elaheh Rostamzadeh Madabi
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masood Asadi Fozi
- Department of Animal ScienceFaculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Gudra D, Valdovska A, Jonkus D, Galina D, Kairisa D, Ustinova M, Viksne K, Fridmanis D, Kalnina I. Genomic Characterization and Initial Insight into Mastitis-Associated SNP Profiles of Local Latvian Bos taurus Breeds. Animals (Basel) 2023; 13:2776. [PMID: 37685039 PMCID: PMC10487150 DOI: 10.3390/ani13172776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Latvia has two local Bos taurus breeds-Latvian Brown (LBG) and Latvian Blue (LZG)-characterized by a good adaptation to the local climate, longevity, and high fat and protein contents in milk. Since these are desired traits in the dairy industry, this study investigated the genetic background of the LBG and LZG breeds and identified the genetic factors associated with mastitis. Blood and semen samples were acquired, and whole genome sequencing was then performed to acquire a genomic sequence with at least 35× or 10× coverage. The heterozygosity, nucleotide diversity, and LD analysis indicated that LBG and LZG cows have similar levels of genetic diversity compared to those of other breeds. An analysis of the population structure revealed that each breed clustered together, but the overall differentiation between the breeds was small. The highest genetic variance was observed in the LZG breed compared with the LBG breed. Our results show that SNP rs721295390 is associated with mastitis in the LBG breed, and SNPs rs383806754, chr29:43998719CG>C, and rs462030680 are associated with mastitis in the LZG breed. This study shows that local Latvian LBG and LZG breeds have a pronounced genetic differentiation, with each one suggesting its own mastitis-associated SNP profile.
Collapse
Affiliation(s)
- Dita Gudra
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
| | - Anda Valdovska
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
- Scientific Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Daina Jonkus
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia (D.K.)
| | - Daiga Galina
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
- Scientific Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia
| | - Daina Kairisa
- Faculty of Agriculture, Latvia University of Life Sciences and Technologies, LV-3001 Jelgava, Latvia (D.K.)
| | - Maija Ustinova
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
| | - Kristine Viksne
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, LV-1007 Riga, Latvia
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
| | - Ineta Kalnina
- Latvian Biomedical Research and Study Centre, LV-1067 Riga, Latvia; (D.G.); (M.U.); (K.V.); (D.F.)
| |
Collapse
|
8
|
Wilmot H, Druet T, Hulsegge I, Gengler N, Calus M. Estimation of inbreeding, between-breed genomic relatedness and definition of sub-populations in red-pied cattle breeds. Animal 2023; 17:100793. [PMID: 37087997 DOI: 10.1016/j.animal.2023.100793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Currently, enhancing the collaboration between related breeds is of main importance to increase the competitivity and the sustainability of local breeds. One type of collaboration is the development of an across-breed reference population that will allow a better management of local breeds. For this purpose, the genomic relatedness between the local target breed and possible breeds to be included in the reference population should be estimated. In Europe, there are several local red-pied cattle breeds that would benefit from this kind of collaboration. However, how different red-pied cattle breeds from the Benelux are related to each other and can collaborate is still unclear. The objectives of this study were therefore: (1) to estimate the level of inbreeding of the East Belgian Red and White (EBRW), the Red-Pied of the Ösling (RPO) and Dutch red-pied cattle breeds; (2) to determine the genomic relatedness of several red-pied cattle breeds, with a special focus on two endangered breeds: the EBRW and the RPO, and (3) based on the second objective, to detect animals from other breeds that were genomically close enough to be considered as advantageous in the creation of an across-breed reference population of EBRW or RPO. The estimated inbreeding levels based on runs of homozygosity were relatively low for almost all the studied breeds and especially for the EBRW and RPO. This would imply that inbreeding is currently not an issue in these two endangered breeds and that their sustainability is not threatened by their level of inbreeding. The results from the principal component analysis, the phylogenetic tree and the clustering all highlighted that the EBRW and RPO breeds were included in the genomic continuum of the studied red-pied cattle breeds and can be therefore considered as genomically close to Dutch red-pied cattle breeds, highlighting the possibility of a collaboration between these breeds. Especially, EBRW animals were closely related to Deep Red and Improved Red animals while, to a lesser extent, the RPO animals were closely related to the Meuse-Rhine-Yssel breed. Based on these results, we could use distance measures, based either on the principal component analysis or clustering, to detect animals from Dutch breeds that were genomically closest to the EBRW or RPO breeds. This will finally allow the building of an across-breed reference population for EBRW or RPO for further genomic evaluations, considering these genomically closest animals from other breeds.
Collapse
|
9
|
Neumann GB, Korkuć P, Arends D, Wolf MJ, May K, König S, Brockmann GA. Genomic diversity and relationship analyses of endangered German Black Pied cattle (DSN) to 68 other taurine breeds based on whole-genome sequencing. Front Genet 2023; 13:993959. [PMID: 36712857 PMCID: PMC9875303 DOI: 10.3389/fgene.2022.993959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
German Black Pied cattle (Deutsches Schwarzbuntes Niederungsrind, DSN) are an endangered dual-purpose cattle breed originating from the North Sea region. The population comprises about 2,500 cattle and is considered one of the ancestral populations of the modern Holstein breed. The current study aimed at defining the breeds closest related to DSN cattle, characterizing their genomic diversity and inbreeding. In addition, the detection of selection signatures between DSN and Holstein was a goal. Relationship analyses using fixation index (FST), phylogenetic, and admixture analyses were performed between DSN and 68 other breeds from the 1000 Bull Genomes Project. Nucleotide diversity, observed heterozygosity, and expected heterozygosity were calculated as metrics for genomic diversity. Inbreeding was measured as excess of homozygosity (FHom) and genomic inbreeding (FRoH) through runs of homozygosity (RoHs). Region-wide FST and cross-population-extended haplotype homozygosity (XP-EHH) between DSN and Holstein were used to detect selection signatures between the two breeds, and RoH islands were used to detect selection signatures within DSN and Holstein. DSN showed a close genetic relationship with breeds from the Netherlands, Belgium, Northern Germany, and Scandinavia, such as Dutch Friesian Red, Dutch Improved Red, Belgian Red White Campine, Red White Dual Purpose, Modern Angler, Modern Danish Red, and Holstein. The nucleotide diversity in DSN (0.151%) was higher than in Holstein (0.147%) and other breeds, e.g., Norwegian Red (0.149%), Red White Dual Purpose (0.149%), Swedish Red (0.149%), Hereford (0.145%), Angus (0.143%), and Jersey (0.136%). The FHom and FRoH values in DSN were among the lowest. Regions with high FST between DSN and Holstein, significant XP-EHH regions, and RoH islands detected in both breeds harbor candidate genes that were previously reported for milk, meat, fertility, production, and health traits, including one QTL detected in DSN for endoparasite infection resistance. The selection signatures between DSN and Holstein provide evidence of regions responsible for the dual-purpose properties of DSN and the milk type of Holstein. Despite the small population size, DSN has a high level of diversity and low inbreeding. FST supports its relatedness to breeds from the same geographic origin and provides information on potential gene pools that could be used to maintain diversity in DSN.
Collapse
Affiliation(s)
- Guilherme B. Neumann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Paula Korkuć
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Danny Arends
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| | - Manuel J. Wolf
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Katharina May
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Sven König
- Institute of Animal Breeding and Genetics, Justus-Liebig-Universität, Giessen, Germany
| | - Gudrun A. Brockmann
- Animal Breeding Biology and Molecular Genetics, Albrecht Daniel Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Gudrun A. Brockmann,
| |
Collapse
|
10
|
Gene Expression of Aquaporins (AQPs) in Cumulus Oocytes Complex and Embryo of Cattle. Animals (Basel) 2022; 13:ani13010098. [PMID: 36611707 PMCID: PMC9817902 DOI: 10.3390/ani13010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/20/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Aquaporins (AQPs) are proteins with various functions related to proper cell function and early development in mammals. The aim of this study was to evaluate the presence of AQPs and determine their mRNA levels in the cumulus oocyte complex (COC) of four bovine breeds and in blastocysts of five bovine crosses. Grade I, II and III COCs were collected by ovum pick up from non-lactating heifers of the Brahaman, Holstein, Gir and Romosinuano breeds. Embryos were produced in vitro up to the blastocyst stage of the bovine ♀Gir × ♂Holstein, ♀Holstein × ♂Gir, ♀Brahman × ♂Holstein, ♀Holstein × ♂Brahman, and ♀Romosinuano × ♂Holstein crosses. mRNA expression of AQP1-AQP12b was estimated in COC and embryos by real-time-PCR. The presence of the twelve AQPs in the COCs and bovine embryos was established. Additionally, significant differences were determined in the expression of AQP6 and AQP12b in COCs, as well as in transcripts levels of AQP4, AQP8 and AQP9 from bovine embryos. Gene expression of AQPs in COCs and bovine embryos is consistent with the previously described biological functions. This is the first report of AQPs in COC of Gir, Brahman, Holstein and Romosinuano and embryos of five crossbreeds between Bos indicus and B. taurus.
Collapse
|
11
|
Oldenbroek JK, Windig JJ. Opportunities of Genomics for the Use of Semen Cryo-Conserved in Gene Banks. Front Genet 2022; 13:907411. [PMID: 35938018 PMCID: PMC9350965 DOI: 10.3389/fgene.2022.907411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Shortly after the introduction of cryo-conserved semen in the main farm animal species, gene banks were founded. Safeguarding farm animal genetic diversity for future use was and is the main objective. A sampling of sires was based on their pedigree and phenotypic information. Nowadays, DNA information from cryo-conserved sires and from animals in the living populations has become available. The combination of their DNA information can be used to realize three opportunities: 1) to make the gene bank a more complete archive of genetic diversity, 2) to determine the history of the genetic diversity from the living populations, and 3) to improve the performance and genetic diversity of living populations. These three opportunities for the use of gene bank sires in the genomic era are outlined in this study, and relevant recent literature is summarized to illustrate the great value of a gene bank as an archive of genetic diversity.
Collapse
|
12
|
Hall SJG. Genetic Differentiation among Livestock Breeds-Values for F st. Animals (Basel) 2022; 12:1115. [PMID: 35565543 PMCID: PMC9103131 DOI: 10.3390/ani12091115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: The Fst statistic is widely used to characterize between-breed relationships. Fst = 0.1 has frequently been taken as indicating genetic distinctiveness between breeds. This study investigates whether this is justified. (2) Methods: A database was created of 35,080 breed pairs and their corresponding Fst values, deduced from microsatellite and SNP studies covering cattle, sheep, goats, pigs, horses, and chickens. Overall, 6560 (19%) of breed pairs were between breeds located in the same country, 7395 (21%) between breeds of different countries within the same region, 20,563 (59%) between breeds located far apart, and 562 (1%) between a breed and the supposed wild ancestor of the species. (3) Results: General values for between-breed Fst were as follows, cattle: microsatellite 0.06-0.12, SNP 0.08-0.15; sheep: microsatellite 0.06-0.10, SNP 0.06-0.17; horses: microsatellite 0.04-0.11, SNP 0.08-0.12; goats: microsatellite 0.04-0.14, SNP 0.08-0.16; pigs: microsatellite 0.06-0.27, SNP 0.15-0.22; chickens: microsatellite 0.05-0.28, SNP 0.08-0.26. (4) Conclusions: (1) Large amounts of Fst data are available for a substantial proportion of the world's livestock breeds, (2) the value for between-breed Fst of 0.1 is not appropriate owing to its considerable variability, and (3) accumulated Fst data may have value for interdisciplinary research.
Collapse
Affiliation(s)
- Stephen J G Hall
- Department of Environmental Protection and Landscape, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
| |
Collapse
|
13
|
Schmid M, Stock J, Bennewitz J, Wellmann R. Improving the Accuracy of Multi-Breed Prediction in Admixed Populations by Accounting for the Breed Origin of Haplotype Segments. Front Genet 2022; 13:840815. [PMID: 35401683 PMCID: PMC8987492 DOI: 10.3389/fgene.2022.840815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Numerically small breeds have often been upgraded with mainstream breeds. This historic introgression predisposes the breeds for joint genomic evaluations with mainstream breeds. The linkage disequilibrium structure differs between breeds. The marker effects of a haplotype segment may, therefore, depend on the breed from which the haplotype segment originates. An appropriate method for genomic evaluation would account for this dependency. This study proposes a method for the computation of genomic breeding values for small admixed breeds that incorporate phenotypic and genomic information from large introgressed breeds by considering the breed origin of alleles (BOA) in the evaluation. The proposed BOA model classifies haplotype segments according to their origins and assumes different but correlated SNP effects for the different origins. The BOA model was compared in a simulation study to conventional within-breed genomic best linear unbiased prediction (GBLUP) and conventional multi-breed GBLUP models. The BOA model outperformed within-breed GBLUP as well as multi-breed GBLUP in most cases.
Collapse
Affiliation(s)
- Markus Schmid
- Institute of Animal Science, Department of Animal Genetics and Breeding, University of Hohenheim, Stuttgart, Germany
| | - Joana Stock
- Institute of Animal Science, Department of Animal Genetics and Breeding, University of Hohenheim, Stuttgart, Germany
| | - Jörn Bennewitz
- Institute of Animal Science, Department of Animal Genetics and Breeding, University of Hohenheim, Stuttgart, Germany
| | - Robin Wellmann
- Institute of Animal Science, Department of Animal Genetics and Breeding, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
14
|
Schmidtmann C, Slagboom M, Sørensen AC, Hinrichs D, Thaller G, Kargo M. Short‐ and long‐term consequences of collaboration between Northern European Red dairy and dual‐purpose cattle. J Anim Breed Genet 2022; 139:447-461. [DOI: 10.1111/jbg.12672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/19/2021] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Christin Schmidtmann
- Institute of Animal Breeding and Husbandry Christian‐Albrechts‐University Kiel Kiel Germany
| | - Margot Slagboom
- Department of Molecular Biology and Genetics Center for Quantitative Genetics and Genomics Aarhus University Tjele Denmark
| | | | - Dirk Hinrichs
- Department of Animal Breeding University of Kassel Witzenhausen Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry Christian‐Albrechts‐University Kiel Kiel Germany
| | - Morten Kargo
- Department of Molecular Biology and Genetics Center for Quantitative Genetics and Genomics Aarhus University Tjele Denmark
| |
Collapse
|
15
|
Genomics Confirm an Alarming Status of the Genetic Diversity of Belgian Red and Belgian White Red Cattle. Animals (Basel) 2021; 11:ani11123574. [PMID: 34944349 PMCID: PMC8697887 DOI: 10.3390/ani11123574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Genetic diversity of livestock is vitally important as it enables the adaptation of future populations to changing environments. Therefore, preserving a sufficiently large genetic diversity is key. However, for many local cattle populations, little is known about their genetic diversity such as inbreeding level, effective size etc. We studied the genetic diversity of two local Belgian red cattle populations (Belgian Red and Belgian White Red cattle) using state-of-the-art genomic techniques. These tools assessed diversity at the population and individual level, and allowed the positioning of these two breeds in an international context of 52 other (European) cattle breeds. Accordingly, we contribute to the general knowledge of European red cattle, and more specifically we help the breeders, breed organization and the government to manage the genetic diversity of both breeds. Abstract Genetic diversity is increasingly important for researchers and society. Small and local populations deserve more attention especially, as they may harbor important characteristics. Moreover, small populations are at greater risk and their genetic management is often more challenging. Likewise, European red cattle populations are threatened, as they are outcompeted by more specialized cattle breeds. In this study, we investigate the genetic diversity of two local Belgian red cattle breeds: Belgian Red and Belgian White Red cattle. A total of 270 animals were genotyped via medium density SNP arrays. Genetic diversity was assessed using runs of homozygosity screening, effective population size estimation and Fst analyses. Genomic inbreeding coefficients based on runs of homozygosity were estimated at 7.0% for Belgian Red and 6.1% for Belgian White Red cattle, and both populations had a low effective population size (68 and 86, respectively). PCA, Fst and admixture analyses revealed the relationship to 52 other international breeds, where they were closest related to some Belgian, French, Scandinavian and Dutch breeds. Moreover, Fst analyses revealed for Belgian Red cattle a signature of selection on BTA6, adjacent to the KIT gene. This study gains important knowledge on the genetic diversity of these two small local red cattle breeds, and will aid in their (genetic) management.
Collapse
|
16
|
Identification of Reference Genes for Expression Studies in the Whole-Blood from Three Cattle Breeds under Two States of Livestock Weather Safety. Animals (Basel) 2021; 11:ani11113073. [PMID: 34827805 PMCID: PMC8614315 DOI: 10.3390/ani11113073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Reductions in the fertility, body weight, and growth rate of cattle across the world are associated with the global warming phenomenon. Developing optimal management strategies is an important aspect of breeding programs for different breeds. Blood tissue undergoes dramatic physiological and metabolic changes during heat stress conditions, which involves the expression and regulation of a great number of genes across species. Real-time quantitative PCR (qPCR) is a method for the rapid and reliable quantification of mRNA transcription. Reference genes are used to normalize mRNA levels between different samples. Thus, the selection of high-quality reference genes is necessary for the interpretation of data generated by real-time PCR. Abstract Real-time PCR is widely used to study the relative abundance of mRNA due to its specificity, sensitivity, and repeatability quantification. However, relative quantification requires a reference gene, which should be stable in its expression, showing lower variation by experimental conditions or tissues. The aim of this study was to evaluate the stability of the expression of five commonly used reference genes (actb, ywhaz, b2m, sdha, and 18s rRNA) at different physiological stages (alert and emergency) in three different cattle breeds. In this study, five genes (actb, ywhaz, b2m, sdha, and 18s rRNA) were selected as candidate reference genes for expression studies in the whole blood from three cattle breeds (Romosinuano, Gyr, and Brahman) under heat stress conditions. The transcription stability of the candidate reference genes was evaluated using geNorm and NormFinder. The results showed that actb, 18SrRNA, and b2m expression were the most stable reference genes for whole blood of Gyr and Brahman breeds under two states of livestock weather safety (alert and emergency). Meanwhile, actb, b2m, and ywhaz were the most stable reference genes for the Romosinuano breed.
Collapse
|
17
|
Zinovieva NA, Sheiko IP, Dotsev AV, Sheiko RI, Mikhailova ME, Sermyagin AA, Abdelmanova AS, Kharzinova VR, Reyer H, Wimmers K, Sölkner J, Pleshanov NV, Brem G. Genome-wide SNP analysis clearly distinguished the Belarusian Red cattle from other European cattle breeds. Anim Genet 2021; 52:720-724. [PMID: 34131930 DOI: 10.1111/age.13102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
Local breeds can serve as an important source of genetic variability in domestic animal species. This study aimed to assess the genetic diversity and population structure of Belarusian Red cattle and their differentiation from other European cattle populations based on genome-wide SNP genotypes. Twenty pedigree-recorded non-closely related cows of Belarusian Red cattle were genotyped using the Illumina BovineHD BeadChip. Genotypes of 22 other European cattle breeds were included in the study for comparison. A total of 28 562 SNPs passed through the quality control checks and were selected for analysis. The Belarusian Red cattle displayed a moderate level of genetic variability (U HE = 0.341, HO = 0.368), and the highest heterozygote excess (U FIS = -0.066), among the studied breeds; this reflects the contribution of multiple breeds to their formation. The principal component analysis, FST -based Neighbor-Net tree and Admixture clustering, clearly distinguished the Belarusian Red cattle from the other European cattle breeds. Moreover, the presence of ancestral genomic components of Danish Red and Brown Swiss breeds were clearly visible, which agrees with the breed's history and its recent development. Our study highlights the importance of maintaining the specific genomic components, which makes a significant contribution to the global genetic diversity in the modern population of Belarusian Red cattle, allowing us to consider them a valuable national genetic resource. Our research results will be useful for the development of conservation programs for this local cattle breed.
Collapse
Affiliation(s)
- N A Zinovieva
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - I P Sheiko
- Scientific and Practical Center of the National Academy of Sciences of Belarus for Animal Husbandry, Zhodino, 222160, Belarus
| | - A V Dotsev
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - R I Sheiko
- Institute of Genetics and Cytology of the National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - M E Mikhailova
- Institute of Genetics and Cytology of the National Academy of Science of Belarus, Minsk, 220072, Belarus
| | - A A Sermyagin
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - A S Abdelmanova
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - V R Kharzinova
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia
| | - H Reyer
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, 18196, Germany
| | - K Wimmers
- Institute of Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, 18196, Germany
| | - J Sölkner
- Division of Livestock Sciences, University of Natural Resources and Life Sciences, Vienna, 1180, Austria
| | - N V Pleshanov
- Russian Research Institute of Farm Animal Genetics and Breeding - Branch of the L.K. Ernst Federal Research Center for Animal Husbandry, St. Petersburg - Pushkin, 196601, Russia
| | - G Brem
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, 142132, Russia.,Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, 1210, Austria
| |
Collapse
|