1
|
Tijjani A, Kambal S, Terefe E, Njeru R, Ogugo M, Ndambuki G, Missohou A, Traore A, Salim B, Ezeasor C, D'andre H C, Obishakin ET, Diallo B, Talaki E, Abdoukarim IY, Nash O, Osei-Amponsah R, Ravaorimanana S, Issa Y, Zegeye T, Mukasa C, Tiambo C, Prendergast JGD, Kemp SJ, Han J, Marshall K, Hanotte O. Genomic Reference Resource for African Cattle: Genome Sequences and High-Density Array Variants. Sci Data 2024; 11:801. [PMID: 39030190 PMCID: PMC11271538 DOI: 10.1038/s41597-024-03589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 07/01/2024] [Indexed: 07/21/2024] Open
Abstract
The diversity in genome resources is fundamental to designing genomic strategies for local breed improvement and utilisation. These resources also support gene discovery and enhance our understanding of the mechanisms of resilience with applications beyond local breeds. Here, we report the genome sequences of 555 cattle (208 of which comprise new data) and high-density (HD) array genotyping of 1,082 samples (537 new samples) from indigenous African cattle populations. The new sequences have an average genome coverage of ~30X, three times higher than the average (~10X) of the over 300 sequences already in the public domain. Following variant quality checks, we identified approximately 32.3 million sequence variants and 661,943 HD autosomal variants mapped to the Bos taurus reference genome (ARS-UCD1.2). The new datasets were generated as part of the Centre for Tropical Livestock Genetics and Health (CTLGH) Genomic Reference Resource for African Cattle (GRRFAC) initiative, which aspires to facilitate the generation of this livestock resource and hopes for its utilisation for complete indigenous breed characterisation and sustainable global livestock improvement.
Collapse
Affiliation(s)
- Abdulfatai Tijjani
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, P.O. Box 5689, Addis Ababa, Ethiopia.
- The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine, 04609, USA.
| | - Sumaya Kambal
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, P.O. Box 5689, Addis Ababa, Ethiopia
- Department of Genetics and Animal Breeding, Faculty of Animal Production, University of Khartoum, Khartoum, Sudan
| | - Endashaw Terefe
- Department of Animal Science, College of Agriculture and Environmental Sciences, Arsi University, Asella, Ethiopia
| | - Regina Njeru
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Moses Ogugo
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Gideon Ndambuki
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Ayao Missohou
- Ecole Inter-Etats des Sciences et Médecine Vétérinaires (EISMV), Dakar, Sénégal
| | - Amadou Traore
- Institut de l'Environnement et de Recherches Agricoles (INERA), Ouagadougou, Burkina Faso
| | - Bashir Salim
- Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan
- Camel Research Center, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Chukwunonso Ezeasor
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Claire D'andre H
- Rwanda Agricultural and Animal Resources Development Board, Kigali, Rwanda
| | - Emmanuel T Obishakin
- Biotechnology Division, National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | | | - Essodina Talaki
- École Supérieure d'Agronomie de l'Université de Lomé, Lomé, Togo
| | - Issaka Y Abdoukarim
- Laboratoire de Biotechnologie Animale et de Technologie des Viandes, Abomey-Calavi, Benin
| | - Oyekanmi Nash
- Centre for Genomics Research and Innovation, NABDA, Abuja, Nigeria
| | - Richard Osei-Amponsah
- Department of Animal Science, College of Basic and Applied Sciences, University of Ghana, Legon, Ghana
| | | | - Youssouf Issa
- Institut National supérieur des Sciences et Techniques d'Abéché-INSTA/Tchad, Abéché, Chad
| | - Tsadkan Zegeye
- Mekelle Agricultural Research Center, Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Christopher Mukasa
- National Animal Genetic Resources Centre and Data Bank (NAGRC&DB), Entebbe, Uganda
| | - Christian Tiambo
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - James G D Prendergast
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Stephen J Kemp
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Yazhouwan National Laboratory, No. 8 Huanjin Road, Yazhou, Sanya, 572024, Hainan, P. R. China
| | - Karen Marshall
- International Livestock Research Institute, P.O. Box 30709, Nairobi, 00100, Kenya.
| | - Olivier Hanotte
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Ethiopia, P.O. Box 5689, Addis Ababa, Ethiopia.
- Cells, Organism and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
2
|
Abebe BK, Wang H, Li A, Zan L. A review of the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle. J Anim Breed Genet 2024; 141:235-256. [PMID: 38146089 DOI: 10.1111/jbg.12841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Abstract
In the past few decades, genomic selection and other refined strategies have been used to increase the growth rate and lean meat production of beef cattle. Nevertheless, the fast growth rates of cattle breeds are often accompanied by a reduction in intramuscular fat (IMF) deposition, impairing meat quality. Transcription factors play vital roles in regulating adipogenesis and lipogenesis in beef cattle. Meanwhile, understanding the role of transcription factors in regulating adipogenesis and lipogenesis in beef cattle has gained significant attention to increase IMF deposition and meat quality. Therefore, the aim of this paper was to provide a comprehensive summary and valuable insight into the complex role of transcription factors in adipogenesis and lipogenesis in beef cattle. This review summarizes the contemporary studies in transcription factors in adipogenesis and lipogenesis, genome-wide analysis of transcription factors, epigenetic regulation of transcription factors, nutritional regulation of transcription factors, metabolic signalling pathways, functional genomics methods, transcriptomic profiling of adipose tissues, transcription factors and meat quality and comparative genomics with other livestock species. In conclusion, transcription factors play a crucial role in promoting adipocyte development and fatty acid biosynthesis in beef cattle. They control adipose tissue formation and metabolism, thereby improving meat quality and maintaining metabolic balance. Understanding the processes by which these transcription factors regulate adipose tissue deposition and lipid metabolism will simplify the development of marbling or IMF composition in beef cattle.
Collapse
Affiliation(s)
- Belete Kuraz Abebe
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- Department of Animal Science, Werabe University, Werabe, Ethiopia
| | - Hongbao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Anning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
3
|
Ward JA, Ng'ang'a SI, Randhawa IAS, McHugo GP, O'Grady JF, Flórez JM, Browne JA, Pérez O’Brien AM, Landaeta-Hernández AJ, Garcia JF, Sonstegard TS, Frantz LAF, Salter-Townshend M, MacHugh DE. Genomic insights into the population history and adaptive traits of Latin American Criollo cattle. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231388. [PMID: 38571912 PMCID: PMC10990470 DOI: 10.1098/rsos.231388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 01/31/2024] [Indexed: 04/05/2024]
Abstract
Criollo cattle, the descendants of animals brought by Iberian colonists to the Americas, have been the subject of natural and human-mediated selection in novel tropical agroecological zones for centuries. Consequently, these breeds have evolved distinct characteristics such as resistance to diseases and exceptional heat tolerance. In addition to European taurine (Bos taurus) ancestry, it has been proposed that gene flow from African taurine and Asian indicine (Bos indicus) cattle has shaped the ancestry of Criollo cattle. In this study, we analysed Criollo breeds from Colombia and Venezuela using whole-genome sequencing (WGS) and single-nucleotide polymorphism (SNP) array data to examine population structure and admixture at high resolution. Analysis of genetic structure and ancestry components provided evidence for African taurine and Asian indicine admixture in Criollo cattle. In addition, using WGS data, we detected selection signatures associated with a myriad of adaptive traits, revealing genes linked to thermotolerance, reproduction, fertility, immunity and distinct coat and skin coloration traits. This study underscores the remarkable adaptability of Criollo cattle and highlights the genetic richness and potential of these breeds in the face of climate change, habitat flux and disease challenges. Further research is warranted to leverage these findings for more effective and sustainable cattle breeding programmes.
Collapse
Affiliation(s)
- James A. Ward
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Said I. Ng'ang'a
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, MunichD-80539, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, LondonE1 4NS, UK
| | | | - Gillian P. McHugo
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - John F. O'Grady
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Julio M. Flórez
- Acceligen, Eagan, MN55121, USA
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | - John A. Browne
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
| | | | - Antonio J. Landaeta-Hernández
- Unidad de Investigaciones Zootécnicas, Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
| | - Jóse F. Garcia
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, Brazil
| | | | - Laurent A. F. Frantz
- Palaeogenomics Group, Department of Veterinary Sciences, Ludwig Maximilian University, MunichD-80539, Germany
- School of Biological and Chemical Sciences, Queen Mary University of London, LondonE1 4NS, UK
| | | | - David E. MacHugh
- Animal Genomics Laboratory, School of Agriculture and Food Science, University College Dublin, DublinD04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, DublinD04 V1W8, Ireland
| |
Collapse
|
4
|
Riggio V, Madder M, Labuschagne M, Callaby R, Zhao R, Djikeng A, Fourie J, Prendergast JGD, Morrison LJ. Meta-analysis of heritability estimates and genome-wide association for tick-borne haemoparasites in African cattle. Front Genet 2023; 14:1197160. [PMID: 37576560 PMCID: PMC10417722 DOI: 10.3389/fgene.2023.1197160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
The control of tick-borne haemoparasites in cattle largely relies on the use of acaricide drugs against the tick vectors, with some vaccination also being used against selected pathogens. These interventions can be difficult in Africa, where accessibility and cost of vaccines can be issues, and the increasing resistance of tick vectors to the widely used acaricides is a complication to disease control. A potential complementary control strategy could be the exploitation of any natural host genetic resistance to the pathogens. However, there are currently very few estimates of the extent of host resistance to tick-borne haemoparasites, and a significant contributing factor to this knowledge gap is likely to be the difficulty of collecting appropriate samples and data in the smallholder systems that predominate livestock production in low- and middle-income countries, particularly at scale. In this study, we have estimated the heritability for the presence/absence of several important haemoparasite species (including Anaplasma marginale, Babesia bigemina, Babesia bovis, and Ehrlichia ruminantium), as well as for relevant traits such as body weight and body condition score (BCS), in 1,694 cattle from four African countries (Burkina Faso, Ghana, Nigeria, and Tanzania). Heritability estimates within countries were mostly not significant, ranging from 0.05 to 0.84 across traits and countries, with standard errors between 0.07 and 0.91. However, the weighted mean of heritability estimates was moderate and significant for body weight and BCS (0.40 and 0.49, respectively), with significant heritabilities also observed for the presence of A. marginale (0.16) and E. ruminantium (0.19). In a meta-analysis of genome-wide association studies (GWAS) for these traits, two peaks were identified as reaching the suggestive significance threshold (p < 1.91 × 10-7 and p < 1.89 × 10-7, respectively): one on chromosome 24 for BCS and one on chromosome 8 for the E. ruminantium infection status. These findings indicate that there is likely to be a genetic basis that contributes to pathogen presence/absence for tick-borne haemoparasite species, which could potentially be exploited to improve cattle resistance in Africa to the economically important diseases caused by these pathogens.
Collapse
Affiliation(s)
- Valentina Riggio
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Rebecca Callaby
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Rongrong Zhao
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Appolinaire Djikeng
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - James G. D. Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J. Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Heylen DJA, Kumsa B, Kimbita E, Frank MN, Muhanguzi D, Jongejan F, Adehan SB, Toure A, Aboagye-Antwi F, Ogo NI, Juleff N, Fourie J, Evans A, Byaruhanga J, Madder M. Tick communities of cattle in smallholder rural livestock production systems in sub-Saharan Africa. Parasit Vectors 2023; 16:206. [PMID: 37337296 PMCID: PMC10280850 DOI: 10.1186/s13071-023-05801-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/04/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The majority of the African population lives in rural areas and depends on agriculture for their livelihoods. To increase the productivity and sustainability of their farms, they need access to affordable yield-enhancing inputs of which parasite control is of paramount importance. We therefore determined the status of current tick species with the highest economic impact on cattle by sampling representative numbers of animals in each of seven sub-Saharan countries. METHODS Data included tick species' half-body counts from approximately 120 cattle at each of two districts per country, collected four times in approximately 1 year (to include seasonality). Study sites were chosen in each country to include high cattle density and tick burden. RESULTS East Africa (Ethiopia, Uganda and Tanzania) showed overall a higher diversity and prevalence in tick infestations compared to West African countries (Benin, Burkina Faso, Ghana and Nigeria). In East Africa, Amblyomma variegatum (vector of Ehrlichia ruminantium), Rhipicephalus microplus (Babesia bovis, B. bigemina, Anaplasma marginale), R. evertsi evertsi (A. marginale) and R. appendiculatus (Theileria parva) were the most prevalent tick species of economic importance. While the latter species was absent in West Africa, here both A. variegatum and R. microplus occurred in high numbers. Rhipicephalus microplus had spread to Uganda, infesting half of the cattle sampled. Rhipicephalus appendiculatus is known for its invasive behaviour and displacement of other blue tick species, as observed in other East and West African countries. Individual cattle with higher body weights, as well as males, were more likely to be infested. For six tick species, we found reduced infestation levels when hosts were treated with anti-parasiticides. CONCLUSIONS These baseline data allow the determination of possible changes in presence and prevalence of ticks in each of the countries targeted, which is of importance in the light of human-caused climate and habitat alterations or anthropogenic activities. As many of the ticks in this study are vectors of important pathogens, but also, as cattle may act as end hosts for ticks of importance to human health, our study will help a wide range of stakeholders to provide recommendations for tick infestation surveillance and prevention.
Collapse
Affiliation(s)
- Dieter J A Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.
| | - Bersissa Kumsa
- Department of Parasitology, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Elikira Kimbita
- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, 3019, Morogoro, Tanzania
| | - Mwiine Nobert Frank
- Department of Bio-molecular Resources and Bio-Laboratory Sciences (BBS), College of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Dennis Muhanguzi
- Department of Bio-molecular Resources and Bio-Laboratory Sciences (BBS), College of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Frans Jongejan
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Safiou Bienvenu Adehan
- National Institute of Agricultural Research (INRAB), Zootechnical, Veterinary and Halieutic Research Laboratory (LRZVH), 01 BP 884, Cotonou, Benin
| | - Alassane Toure
- Université Nangui Abrogoua, UFR Sciences de la Nature, 02 Bp 801, Abidjan 02, Côte d'Ivoire
| | - Fred Aboagye-Antwi
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Ndudim Isaac Ogo
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Nick Juleff
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Josephus Fourie
- Clinvet International Pty (Ltd), 1479 Talmadge Hill South, Waverly, NY, 14892, USA
| | - Alec Evans
- Clinglobal, B03/04, The Tamarin Commercial Hub, Jacaranda Avenue, Tamarin, 90903, Mauritius
| | - Joseph Byaruhanga
- Research Center for Tropical Diseases and Vector Control (RTC), Department of Veterinary Pharmacy, Clinics and Comparative Medicine, School of Veterinary Medicine and Animal Resources, College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Maxime Madder
- Clinglobal, B03/04, The Tamarin Commercial Hub, Jacaranda Avenue, Tamarin, 90903, Mauritius
| |
Collapse
|
6
|
Powell J, Talenti A, Fisch A, Hemmink JD, Paxton E, Toye P, Santos I, Ferreira BR, Connelley TK, Morrison LJ, Prendergast JGD. Profiling the immune epigenome across global cattle breeds. Genome Biol 2023; 24:127. [PMID: 37218021 DOI: 10.1186/s13059-023-02964-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 05/08/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Understanding the variation between well and poorly adapted cattle breeds to local environments and pathogens is essential for breeding cattle with improved climate and disease-resistant phenotypes. Although considerable progress has been made towards identifying genetic differences between breeds, variation at the epigenetic and chromatin levels remains poorly characterized. Here, we generate, sequence and analyse over 150 libraries at base-pair resolution to explore the dynamics of DNA methylation and chromatin accessibility of the bovine immune system across three distinct cattle lineages. RESULTS We find extensive epigenetic divergence between the taurine and indicine cattle breeds across immune cell types, which is linked to the levels of local DNA sequence divergence between the two cattle sub-species. The unique cell type profiles enable the deconvolution of complex cellular mixtures using digital cytometry approaches. Finally, we show distinct sub-categories of CpG islands based on their chromatin and methylation profiles that discriminate between classes of distal and gene proximal islands linked to discrete transcriptional states. CONCLUSIONS Our study provides a comprehensive resource of DNA methylation, chromatin accessibility and RNA expression profiles of three diverse cattle populations. The findings have important implications, from understanding how genetic editing across breeds, and consequently regulatory backgrounds, may have distinct impacts to designing effective cattle epigenome-wide association studies in non-European breeds.
Collapse
Affiliation(s)
- Jessica Powell
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - Andrea Talenti
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Andressa Fisch
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Johanneke D Hemmink
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
| | - Edith Paxton
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Philip Toye
- The International Livestock Research Institute, PO Box 30709, Nairobi, 00100, Kenya
- Centre for Tropical Livestock Genetics and Health, ILRI Kenya, PO Box 30709, Nairobi, 00100, Kenya
| | - Isabel Santos
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Beatriz R Ferreira
- Ribeirão Preto College of Nursing, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Tim K Connelley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - Liam J Morrison
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| | - James G D Prendergast
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Centre for Tropical Livestock Genetics and Health, Roslin Institute, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
7
|
Heylen DJA, Kumsa B, Kimbita E, Frank MN, Muhanguzi D, Jongejan F, Adehan SB, Toure A, Aboagye-Antwi F, Ogo NI, Juleff N, Crafford D, Fourie J, Labuchange M, Madder M. Tick-borne pathogens and body condition of cattle in smallholder rural livestock production systems in East and West Africa. Parasit Vectors 2023; 16:117. [PMID: 36998091 PMCID: PMC10064580 DOI: 10.1186/s13071-023-05709-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/18/2023] [Indexed: 04/01/2023] Open
Abstract
BACKGROUND The majority of the African population lives in rural areas where they heavily depend on crop and livestock production for their livelihoods. Given their socio-economic importance, we initiated a standardized multi-country (Benin, Burkina Faso, Ghana, Nigeria, Ethiopia Tanzania and Uganda) surveillance study to assess the current status of important tick-borne haemoparasites (TBHPs) of cattle. METHODS We assessed pathogen prevalences (Anaplasma marginale, Anaplasma centrale, Babesia bigemina, Babesia bovis, Ehrlichia ruminantium, and Theileria parva) in the blood of 6447 animals spread over fourteen districts (two districts per country). In addition, we screened for intrinsic (sex, weight, body condition) and extrinsic (husbandry, tick exposure) risk factors as predictors of infections with TBHPs. RESULTS There was a large macro-geographic variation observed in A. marginale, B. bigemina, B. bovis and E. ruminantium prevalences. Most correlated with the co-occurrence of their specific sets of vector-competent ticks. Highest numbers of infected cattle were found in Ghana and Benin, and lowest in Burkina Faso. While T. parva was seldomly found (Uganda only: 3.0%), A. marginale was found in each country with a prevalence of at least 40%. Babesia bovis infected individuals had lower body condition scores. Age (as estimated via body weight) was higher in A. marginale infected cattle, but was negatively correlated with B. bigemina and E. ruminantium prevalences. Ehrlichia ruminantium infection was more often found in males, and A. marginale more often in transhumance farming. High levels of co-infection, especially the combination A. marginale × B. bigemina, were observed in all countries, except for Uganda and Burkina Faso. Babesia bigemina was more or less often observed than expected by chance, when cattle were also co-infected with E. ruminantium or A. marginale, respectively. CONCLUSIONS Tick-borne pathogens of cattle are ubiquitous in African's smallholder cattle production systems. Our standardized study will help a wide range of stakeholders to provide recommendations for TBHP surveillance and prevention in cattle, especially for B. bovis which heavily impacts production and continues its spread over the African continent via the invasive Rhipicephalus microplus tick.
Collapse
Affiliation(s)
- Dieter J A Heylen
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.
- Eco-Epidemiology Group, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.
| | - Bersissa Kumsa
- Department of Parasitology, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Elikira Kimbita
- Department of Veterinary Microbiology and Parasitology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, PO Box 3019, Morogoro, Tanzania
| | - Mwiine Nobert Frank
- Department of Bio-Molecular Resources and Bio-Laboratory Sciences (BBS), College of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Dennis Muhanguzi
- Department of Bio-Molecular Resources and Bio-Laboratory Sciences (BBS), College of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Frans Jongejan
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Safiou Bienvenu Adehan
- Zootechnical, Veterinary and Halieutic Research Laboratory (LRZVH), National Institute of Agricultural Research (INRAB), 01 BP 884, Cotonou, Benin
| | - Alassane Toure
- Université Nangui Abrogoua, UFR Sciences de La Nature, 02 Bp 801, Abidjan 02, Côte d'Ivoire
| | - Fred Aboagye-Antwi
- Department of Animal Biology and Conservation Science, School of Biological Sciences, College of Basic and Applied Sciences, University of Ghana, Legon-Accra, Ghana
| | - Ndudim Isaac Ogo
- National Veterinary Research Institute, Vom, Plateau State, Nigeria
| | - Nick Juleff
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Dionne Crafford
- Clinvet International Pty (Ltd), 1479 Talmadge Hill South, Waverly, NY, 14892, USA
| | - Josephus Fourie
- Clinvet International Pty (Ltd), 1479 Talmadge Hill South, Waverly, NY, 14892, USA
| | | | - Maxime Madder
- Clinglobal, B03/04, The Tamarin Commercial Hub, Jacaranda Avenue, Tamarin, 90903, Mauritius
| |
Collapse
|