1
|
Silva GAA, Harder AM, Kirksey KB, Mathur S, Willoughby JR. Detectability of runs of homozygosity is influenced by analysis parameters and population-specific demographic history. PLoS Comput Biol 2024; 20:e1012566. [PMID: 39480880 DOI: 10.1371/journal.pcbi.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/12/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Wild populations are increasingly threatened by human-mediated climate change and land use changes. As populations decline, the probability of inbreeding increases, along with the potential for negative effects on individual fitness. Detecting and characterizing runs of homozygosity (ROHs) is a popular strategy for assessing the extent of individual inbreeding present in a population and can also shed light on the genetic mechanisms contributing to inbreeding depression. Here, we analyze simulated and empirical datasets to demonstrate the downstream effects of program selection and long-term demographic history on ROH inference, leading to context-dependent biases in the results. Through a sensitivity analysis we evaluate how various parameter values impact ROH-calling results, highlighting its utility as a tool for parameter exploration. Our results indicate that ROH inferences are sensitive to factors such as sequencing depth and ROH length distribution, with bias direction and magnitude varying with demographic history and the programs used. Estimation biases are particularly pronounced at lower sequencing depths, potentially leading to either underestimation or overestimation of inbreeding. These results are particularly important for the management of endangered species, as underestimating inbreeding signals in the genome can substantially undermine conservation initiatives. We also found that small true ROHs can be incorrectly lumped together and called as longer ROHs, leading to erroneous inference of recent inbreeding. To address these challenges, we suggest using a combination of ROH detection tools and ROH length-specific inferences, along with sensitivity analysis, to generate robust and context-appropriate population inferences regarding inbreeding history. We outline these recommendations for ROH estimation at multiple levels of sequencing effort, which are typical of conservation genomics studies.
Collapse
Affiliation(s)
- Gabriel A A Silva
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Avril M Harder
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| | - Kenneth B Kirksey
- Walker College of Business, Appalachian State University, Boone, North Carolina, United States of America
| | - Samarth Mathur
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Janna R Willoughby
- College of Forestry, Wildlife, and Environment, Auburn University, Auburn, Alabama, United States of America
| |
Collapse
|
2
|
Dadousis C, Ablondi M, Cipolat-Gotet C, van Kaam JT, Finocchiaro R, Marusi M, Cassandro M, Sabbioni A, Summer A. Genomic inbreeding coefficients using imputation genotypes: Assessing the effect of ancestral genotyping in Holstein-Friesian dairy cows. J Dairy Sci 2024; 107:5869-5880. [PMID: 38490541 DOI: 10.3168/jds.2024-24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
The objective of this study was to assess the effect of using or not using the genotypes of the parents of a cow for imputing SNPs on the estimation of genomic inbreeding coefficients of cows. Imputation (i.e., genotyped plus imputed) genotypes from 68,127 Italian Holstein dairy cows registered in the Italian National Association of Holstein, Brown, and Jersey Breeders were analyzed. Cows were genotyped with the high-density (HD) Illumina Infinium BovineHD BeadChip and GeneSeek Genomic Profiler HD-150K, and the medium-density (MD) GeneSeek Genomic Profiler 3, GeneSeek Genomic Profiler 4, GeneSeek MD, and the Labogena MD. To assess differences among estimators, genomic inbreeding coefficients were estimated with 4 PLINK v1.9 estimators (F, Fhat1,Fhat2, andFhat3), 2 genomic relationship matrix- (grm) based estimators (Fgrm and Fgrm2, with the latter including also pedigree information), and one estimator of runs of homozygosity (ROH; FROH). Assuming that the correct genomic inbreeding coefficients should be those estimated from genotyped SNPs, a comparison of the genomic inbreeding coefficients estimated either with the genotyped SNPs or the SNPs after imputation was made. Information on the presence or absence of genotypic information from sire, dam, and maternal grandsire during the imputation was investigated. Genomic inbreeding coefficients estimated with genotyped SNPs or SNPs after imputation were consistent for F, Fhat3, Fgrm2, and FROH, when at least one of the parents was genotyped. Biased (mainly higher) genomic inbreeding coefficients of imputation SNPs were observed in cows that were genotyped with MD SNP panels whose SNPs were poorly represented in the selected imputation SNP dataset and also did not have their parents genotyped, when compared with what would be expected based on actual genotype data. For cows genotyped with MD the estimators Fhat1, Fhat2, and Fgrm provided higher genomic inbreeding coefficients of imputation SNPs even with both parents and the maternal grandsire genotyped. Overall, FROH was the most robust estimator, followed by F and Fhat3. Our findings suggest that SNPs selection, parental genotyping and estimator should be considered for designing imputation strategies in dairy cattle for estimating genomic inbreeding with imputation SNPs. For computing genomic inbreeding coefficients, it is recommendable to have at least one parent genotyped and use an ROH-based estimator.
Collapse
Affiliation(s)
- Christos Dadousis
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Michela Ablondi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | | | - Jan-Thijs van Kaam
- Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), 26100 Cremona, Italy
| | - Raffaella Finocchiaro
- Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), 26100 Cremona, Italy
| | - Maurizio Marusi
- Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), 26100 Cremona, Italy
| | - Martino Cassandro
- Associazione Nazionale Allevatori della Razza Frisona, Bruna e Jersey Italiana (ANAFIBJ), 26100 Cremona, Italy; Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro (PD), Italy
| | - Alberto Sabbioni
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| | - Andrea Summer
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy
| |
Collapse
|
3
|
Chen SY, Luo Z, Jia X, Zhou J, Lai SJ. Evaluating genomic inbreeding of two Chinese yak (Bos grunniens) populations. BMC Genomics 2024; 25:712. [PMID: 39044139 PMCID: PMC11267844 DOI: 10.1186/s12864-024-10640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Yaks are a vital livestock in the Qinghai-Tibetan Plateau area for providing food products, maintaining sustainable ecosystems, and promoting cultural heritage. Because of uncontrolled mating, it is impossible to estimate inbreeding level of yak populations using the pedigree-based approaches. With the aims to accurately evaluate inbreeding level of two Chinese yak populations (Maiwa and Jiulong), we obtained genome-wide single nucleotide polymorphisms (SNPs) by DNA sequencing and calculated five SNP-by-SNP estimators ([Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]), as well as two segment-based estimators of runs of homozygosity (ROH, [Formula: see text]) and homozygous-by-descent (HBD, [Formula: see text]). Functional implications were analyzed for the positional candidate genes located within the related genomic regions. RESULTS A total of 151,675 and 190,955 high-quality SNPs were obtained from 71 Maiwa and 30 Jiulong yaks, respectively. Jiulong had greater genetic diversity than Maiwa in terms of allele frequency and nucleotide diversity. The two populations could be genetically distinguished by principal component analysis, with the mean differentiation index (Fst) of 0.0054. The greater genomic inbreeding levels of Maiwa yaks were consistently supported by all five SNP-by-SNP estimators. Based on simple proportion of homozygous SNPs ([Formula: see text]), a lower inbreeding level was indicated by three successfully sequenced old leather samples that may represent historical Maiwa yaks about five generations ago. There were 3304 ROH detected among all samples, with mean and median length of 1.97 Mb and 1.0 Mb, respectively. A total of 94 HBD segments were found among all samples, whereas 92 of them belonged to the shortest class with the mean length of 10.9 Kb. Based on the estimates of [Formula: see text] and [Formula: see text], however, there was no difference in inbreeding level between Maiwa and Jiulong yaks. Within the genomic regions with the significant Fst or enriched by ROH, we found several candidate genes and pathways that have been reported to be related to diverse production traits in farm animals. CONCLUSIONS We successfully evaluated the genomic inbreeding level of two Chinese yak populations. Although different estimators resulted in inconsistent conclusions on their genomic inbreeding levels, our results may be helpful to implement the genetic conservation and utilization programs for the two yak populations.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 211# Huimin Road, Wenjiang, Sichuan, 611130, China.
| | - Zhihao Luo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 211# Huimin Road, Wenjiang, Sichuan, 611130, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 211# Huimin Road, Wenjiang, Sichuan, 611130, China
| | - Junkun Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 211# Huimin Road, Wenjiang, Sichuan, 611130, China
| | - Song-Jia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 211# Huimin Road, Wenjiang, Sichuan, 611130, China.
| |
Collapse
|
4
|
Kichamu N, Wanjala G, Cziszter LT, Strausz P, Astuti PK, Bagi Z, Kusza S. Assessing the population structure and genetic variability of Kenyan native goats under extensive production system. Sci Rep 2024; 14:16342. [PMID: 39014189 PMCID: PMC11252283 DOI: 10.1038/s41598-024-67374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Indigenous goats are important to many livelihoods. Despite this, they are subjected to indiscriminate crossbreeding. This affects their genetic variability which is needed to survive in current regime of climate change. The study assessed population structure and genetic diversity of Galla and Small East African goats (SEA) using pedigree information. A total of 7384 animals, 5222 of the Galla and 2162 of the SEA breeds, born between the years 1983 and 2022, were utilized. Individuals with known parents were defined as reference population. From the results, the maximum generation traced for Galla and SEA populations was 14.6 and 14.5, respectively. However, only 6 and 5 generations for Galla and SEA were complete. Pedigree completeness increased with the increasing number of generations. The average generation interval (GI) for Galla and SEA was 3.84 ± 0.04 and 4.4 ± 0.13 years. The average increase in the rate of inbreeding per generation for Galla and SEA was 0.04 and 0.05, with the effective ancestors and founders (fa/fe) ratio being same (1.00) for both breeds. Fifty percent (50%) of the genetic variability in the populations was contributed by 3 and 1 ancestor for Galla SEA, respectively. The effective population size (Ne) was 5.19 and 4.77 for Galla and SEA. Therefore, the current breeding programs should be changed to avoid future genetic bottlenecks in this population. These findings offer an opportunity to enhance the current genetic status and management of Kenyan native goats and other regions with similar production systems.
Collapse
Affiliation(s)
- Nelly Kichamu
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
- Ministry of Agriculture Livestock, Fisheries and Cooperatives, Directorate of Livestock Development, Naivasha Sheep and Goats Breeding Station, P.O. Box 2238-20117, Naivasha, Kenya
| | - George Wanjala
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
- Ministry of Agriculture, Livestock, Fisheries, Cooperatives and Irrigation, Directorate of Livestock Production, P.O. Box 437-50200, Bungoma, Kenya
| | - Ludovic Toma Cziszter
- Faculty of Bioengineering of Animal Resources, University of Life Sciences "King Mihai I" From Timișoara, 300645, Timișoara, Romania
| | - Péter Strausz
- Institute of Strategy and Management, Department of Management, Corvinus University of Budapest, Budapest, 1093, Hungary
| | - Putri Kusuma Astuti
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
- Doctoral School of Animal Science, University of Debrecen, Debrecen, 4032, Hungary
| | - Zoltán Bagi
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary
| | - Szilvia Kusza
- Centre for Agricultural Genomics and Biotechnology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
5
|
Mugambe J, Ahmed RH, Thaller G, Schmidtmann C. Impact of inbreeding on production, fertility, and health traits in German Holstein dairy cattle utilizing various inbreeding estimators. J Dairy Sci 2024; 107:4714-4725. [PMID: 38310961 DOI: 10.3168/jds.2023-23728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
In dairy cattle production, it is important to understand how inbreeding affects production, fertility, and health traits. However, there is still limited use of genomic information to estimate inbreeding, despite advancements in genotyping technologies. To address this gap, we investigated the effect of inbreeding on German Holstein dairy cattle using both pedigree-based and genomic-based inbreeding estimators. We employed one method based on pedigree information (Fped) together with 6 genomic-based methods, including 3 genome-wide complex trait analysis software estimators (Fhat1, Fhat2, Fhat3), VanRaden's first method (FVR1, with observed allele frequencies, and FVR0.5, when allele frequencies are set to 0.5), and one based on runs of homozygosity (Froh). Data from 24,489 cows with both phenotypes and genotypes were used, with a pedigree including 232,780 animals born between 1970 and 2018. We analyzed the effects of inbreeding depression on production, fertility, and health traits separately, using single-trait linear animal models as well as threshold models to account for the binary nature of the health traits. For the health traits, we transformed solutions from the liability scale to a probability scale for easier interpretation. Our results showed that the mean inbreeding coefficients from all estimators ranged from -0.003 to 0.243, with negative values observed for most genomic-based methods. We found out that a 1% increase in inbreeding caused a depression ranging from 25.94 kg (Fhat1) to 40.62 kg (Fhat3), 1.18 kg (Fhat2) to 1.70 kg (Fhat3), 0.90 kg (Fhat2) to 1.45 kg (Froh and Fhat3), 0.19 (Fped) to 0.34 d (Fhat3) for 305-d milk yield, fat, protein, and calving interval, respectively. The health traits showed very slight gradual changes when inbreeding was increased steadily from 0% to 50%, with digital dermatitis showing a rather contrasting trend to that of mastitis, which increased the more an animal was inbred. Overall, our study highlights the importance of considering both pedigree-based and genomic-based inbreeding estimators when assessing the impact on inbreeding, emphasizing that not all inbreeding is harmful.
Collapse
Affiliation(s)
- Julius Mugambe
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany.
| | - Rana H Ahmed
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Christin Schmidtmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany; IT-Solutions for Animal Production (vit), 27283 Verden, Germany
| |
Collapse
|
6
|
Tan X, Liu L, Dong J, Huang M, Zhang J, Li Q, Wang H, Bai L, Cui M, Zhou Z, Wu D, Xiang Y, Li W, Wang D. Genome-wide detections for runs of homozygosity and selective signatures reveal novel candidate genes under domestication in chickens. BMC Genomics 2024; 25:485. [PMID: 38755540 PMCID: PMC11097469 DOI: 10.1186/s12864-024-10349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Indigenous chickens were developed through a combination of natural and artificial selection; essentially, changes in genomes led to the formation of these modern breeds via admixture events. However, their confusing genetic backgrounds include a genomic footprint regulating complex traits, which is not conducive to modern animal breeding. RESULTS To better evaluate the candidate regions under domestication in indigenous chickens, we considered both runs of homozygosity (ROHs) and selective signatures in 13 indigenous chickens. The genomes of Silkie feather chickens presented the highest heterozygosity, whereas the highest inbreeding status and ROH number were found in Luhua chickens. Short ROH (< 1 Mb), were the principal type in all chickens. A total of 291 ROH islands were detected, and QTLdb mapping results indicated that body weight and carcass traits were the most important traits. An ROH on chromosome 2 covering VSTM2A gene was detected in 12 populations. Combined analysis with the Tajima's D index revealed that 18 genes (e.g., VSTM2A, BBOX1, and RYR2) were under selection and covered by ROH islands. Transcriptional analysis results showed that RYR2 and BBOX1 were specifically expressed in the heart and muscle tissue, respectively. CONCLUSION Based on genome-wide scanning for ROH and selective signatures, we evaluated the genomic characteristics and detected significant candidate genes covered by ROH islands and selective signatures. The findings in this study facilitated the understanding of genetic diversity and provided valuable insights for chicken breeding and conservation strategies.
Collapse
Affiliation(s)
- Xiaodong Tan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qinghai Li
- Animal Husbandry Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Huanhuan Wang
- Animal Husbandry Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Lijuan Bai
- Zhejiang Animal Husbandry Technology Extension and Breeding Livestock and Poultry Monitoring Station, Hangzhou, 310020, China
| | - Ming Cui
- Zhejiang Animal Husbandry Technology Extension and Breeding Livestock and Poultry Monitoring Station, Hangzhou, 310020, China
| | - Zhenzhen Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Wu
- Postdoctoral Research Station, Jinhua Development Zone, Jinhua, Zhejiang, 321000, China
| | - Yun Xiang
- Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China.
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
7
|
Lavanchy E, Weir BS, Goudet J. Detecting inbreeding depression in structured populations. Proc Natl Acad Sci U S A 2024; 121:e2315780121. [PMID: 38687793 PMCID: PMC11087799 DOI: 10.1073/pnas.2315780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Measuring inbreeding and its consequences on fitness is central for many areas in biology including human genetics and the conservation of endangered species. However, there is no consensus on the best method, neither for quantification of inbreeding itself nor for the model to estimate its effect on specific traits. We simulated traits based on simulated genomes from a large pedigree and empirical whole-genome sequences of human data from populations with various sizes and structures (from the 1,000 Genomes project). We compare the ability of various inbreeding coefficients ([Formula: see text]) to quantify the strength of inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes which differ in the weight they attribute to each locus and two identical-by-descent segments-based estimators. We also compare two models: the standard linear model and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as random effect to account for the nonindependence of observations. We find LMMs give better results in scenarios with population or family structure. Within the LMM, we compare three different GRMs and show that in homogeneous populations, there is little difference among the different [Formula: see text] and GRM for inbreeding depression quantification. However, as soon as a strong population or family structure is present, the strength of inbreeding depression can be most efficiently estimated only if i) the phenotypes are regressed on [Formula: see text] based on a weighted version of the correlation of uniting gametes, giving more weight to common alleles and ii) with the GRM obtained from an allele-sharing relatedness estimator.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne1015, Switzerland
- Population Genetics and Genomics group, Swiss Institute of Bioinformatics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, SeattleWA98195
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne1015, Switzerland
- Population Genetics and Genomics group, Swiss Institute of Bioinformatics, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
8
|
Huang C, Zhao Q, Chen Q, Su Y, Ma Y, Ye S, Zhao Q. Runs of Homozygosity Detection and Selection Signature Analysis for Local Goat Breeds in Yunnan, China. Genes (Basel) 2024; 15:313. [PMID: 38540373 PMCID: PMC10970279 DOI: 10.3390/genes15030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
Runs of Homozygosity (ROH) are continuous homozygous DNA segments in diploid genomes, which have been used to estimate the genetic diversity, inbreeding levels, and genes associated with specific traits in livestock. In this study, we analyzed the resequencing data from 10 local goat breeds in Yunnan province of China and five additional goat populations obtained from a public database. The ROH analysis revealed 21,029 ROH segments across the 15 populations, with an average length of 1.27 Mb, a pattern of ROH, and the assessment of the inbreeding coefficient indicating genetic diversity and varying levels of inbreeding. iHS (integrated haplotype score) was used to analyze high-frequency Single-Nucleotide Polymorphisms (SNPs) in ROH regions, specific genes related to economic traits such as coat color and weight variation. These candidate genes include OCA2 (OCA2 melanosomal transmembrane protein) and MLPH (melanophilin) associated with coat color, EPHA6 (EPH receptor A6) involved in litter size, CDKAL1 (CDK5 regulatory subunit associated protein 1 like 1) and POMC (proopiomelanocortin) linked to weight variation and some putative genes associated with high-altitude adaptability and immune. This study uncovers genetic diversity and inbreeding levels within local goat breeds in Yunnan province, China. The identification of specific genes associated with economic traits and adaptability provides actionable insights for utilization and conservation efforts.
Collapse
Affiliation(s)
- Chang Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yinxiao Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Shaohui Ye
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| |
Collapse
|
9
|
Naji MM, Gualdrón Duarte JL, Forneris NS, Druet T. Inbreeding depression is associated with recent homozygous-by-descent segments in Belgian Blue beef cattle. Genet Sel Evol 2024; 56:10. [PMID: 38297209 PMCID: PMC10832232 DOI: 10.1186/s12711-024-00878-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cattle populations harbor generally high inbreeding levels that can lead to inbreeding depression (ID). Here, we study ID with different estimators of the inbreeding coefficient F, evaluate their sensitivity to used allele frequencies (founder versus sample allele frequencies), and compare effects from recent and ancient inbreeding. METHODS We used data from 14,205 Belgian Blue beef cattle genotyped cows that were phenotyped for 11 linear classification traits. We computed estimators of F based on the pedigree information (FPED), on the correlation between uniting gametes (FUNI), on the genomic relationship matrix (FGRM), on excess homozygosity (FHET), or on homozygous-by-descent (HBD) segments (FHBD). RESULTS FUNI and FGRM were sensitive to used allele frequencies, whereas FHET and FHBD were more robust. We detected significant ID for four traits related to height and length; FHBD and FUNI presenting the strongest associations. Then, we took advantage of the classification of HBD segments in different age-related classes (the length of an HBD segment being inversely related to the number of generations to the common ancestors) to determine that recent HBD classes (common ancestors present approximately up to 15 generations in the past) presented stronger ID than more ancient HBD classes. We performed additional analyses to check whether these observations could result from a lower level of variation in ancient HBD classes, or from a reduced precision to identify these shorter segments. CONCLUSIONS Overall, our results suggest that mutational load decreases with haplotype age, and that mating plans should consider mainly the levels of recent inbreeding.
Collapse
Affiliation(s)
- Maulana Mughitz Naji
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liege, Belgium.
| | - José Luis Gualdrón Duarte
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liege, Belgium
- Walloon Breeders Association (awe groupe), 5590, Ciney, Belgium
| | - Natalia Soledad Forneris
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liege, Belgium
| | - Tom Druet
- Unit of Animal Genomics, GIGA-R & Faculty of Veterinary Medicine, University of Liège, Quartier Hôpital, Avenue de l'Hôpital, 11, 4000, Liege, Belgium
| |
Collapse
|
10
|
He S, Wang Y, Luo Y, Xue M, Wu M, Tan H, Peng Y, Wang K, Fang M. Integrated analysis strategy of genome-wide functional gene mining reveals DKK2 gene underlying meat quality in Shaziling synthesized pigs. BMC Genomics 2024; 25:30. [PMID: 38178019 PMCID: PMC10765619 DOI: 10.1186/s12864-023-09925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Shaziling pig is a well-known indigenous breed in China who has superior meat quality traits. However, the genetic mechanism and genomic evidence underlying meat quality characteristics of Shaziling pigs are still unclear. To explore and investigate the germplasm characteristics of Shaziling pigs, we totally analyzed 67 individual's whole genome sequencing data for the first time (20 Shaziling pigs [S], 20 Dabasha pigs [DBS], 11 Yorkshire pigs [Y], 10 Berkshire pigs [BKX], 5 Basha pigs [BS] and 1 Warthog). RESULTS A total of 2,538,577 SNPs with high quality were detected and 9 candidate genes which was specifically selected in S and shared in S to DBS were precisely mined and screened using an integrated analysis strategy of identity-by-descent (IBD) and selective sweep. Of them, dickkopf WNT signaling pathway inhibitor 2 (DKK2), the antagonist of Wnt signaling pathway, was the most promising candidate gene which was not only identified an association of palmitic acid and palmitoleic acid quantitative trait locus in PigQTLdb, but also specifically selected in S compared to other 48 Chinese local pigs of 12 populations and 39 foreign pigs of 4 populations. Subsequently, a mutation at 12,726-bp of DKK2 intron 1 (g.114874954 A > C) was identified associated with intramuscular fat content using method of PCR-RFLP in 21 different pig populations. We observed DKK2 specifically expressed in adipose tissues. Overexpression of DKK2 decreased the content of triglyceride, fatty acid synthase and expression of relevant genes of adipogenic and Wnt signaling pathway, while interference of DKK2 got contrary effect during adipogenesis differentiation of porcine preadipocytes and 3T3-L1 cells. CONCLUSIONS Our findings provide an analysis strategy for mining functional genes of important economic traits and provide fundamental data and molecular evidence for improving pig meat quality traits and molecular breeding.
Collapse
Affiliation(s)
- Shuaihan He
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yubei Wang
- Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Yabiao Luo
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingming Xue
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Maisheng Wu
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product, Xiangtan, 411102, China
| | - Hong Tan
- Xiangtan Bureau of Animal Husbandry and Veterinary Medicine and Aquatic Product, Xiangtan, 411102, China
| | - Yinglin Peng
- Hunan Institute of Animal & Veterinary Science, Changsha, 410131, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Meiying Fang
- State Key Laboratory of Animal Biotech Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Sanya Institute of China Agricultural University, Sanya, 572025, China.
| |
Collapse
|
11
|
Ojeda-Marín C, Cervantes I, Formoso-Rafferty N, Gutiérrez JP. Genomic inbreeding measures applied to a population of mice divergently selected for birth weight environmental variance. Front Genet 2023; 14:1303748. [PMID: 38155710 PMCID: PMC10752941 DOI: 10.3389/fgene.2023.1303748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023] Open
Abstract
This study aimed to compare different inbreeding measures estimated from pedigree and molecular data from two divergent mouse lines selected for environmental birth weight during 26 generations. Furthermore, the performance of different approaches and both molecular and pedigree data sources for estimating Ne were tested in this population. A total of 1,699 individuals were genotyped using a high-density genotyping array. Genomic relationship matrices were used to calculate molecular inbreeding: Nejati-Javaremi (F NEJ), Li and Horvitz (F L&H), Van Raden method 1 (F VR1) and method 2 (F VR2), and Yang (F YAN). Inbreeding based on runs of homozygosity (F ROH) and pedigree inbreeding (F PED) were also computed. F ROH, F NEJ, and F L&H were also adjusted for their average values in the first generation of selection and named F ROH0, F NEJ0, and F L&H0. ∆F was calculated from pedigrees as the individual inbreeding rate between the individual and his parents (∆F PEDt) and individual increases in inbreeding (∆F PEDi). Moreover, individual ∆F was calculated from the different molecular inbreeding coefficients (∆F NEJ0, ∆F L&H, ∆F L&H0, ∆F VR1, ∆F VR2, ∆F YAN, and ∆F ROH0). The Ne was obtained from different ∆F, such as Ne PEDt, Ne PEDi, Ne NEJ0, Ne L&H, Ne L&H0, Ne VR1, Ne VR2, Ne YAN, and Ne ROH0. Comparing with F PED , F ROH , F NEJ and F VR2 overestimated inbreeding while F NEJ0 , F L&H , F L&H0 , F VR1 and F YAN underestimated inbreeding. Correlations between inbreeding coefficients and ∆F were calculated. F ROH had the highest correlation with F PED (0.89); F YAN had correlations >0.95 with all the other molecular inbreeding coefficients. Ne PEDi was more reliable than Ne PEDt and presented similar behaviour to Ne L&H0 and Ne NEJ0. Stable trends in Ne were not observed until the 10th generation. In the 10th generation Ne PEDi was 42.20, Ne L&H0 was 45.04 and Ne NEJ0 was 45.05 and in the last generation these Ne were 35.65, 35.94 and 35.93, respectively F ROH presented the highest correlation with F PED, which addresses the identity by descent probability (IBD). The evolution of Ne L&H0 and Ne NEJ0 was the most similar to that of Ne PEDi. Data from several generations was necessary to reach a stable trend for Ne, both with pedigree and molecular data. This population was useful to test different approaches to computing inbreeding coefficients and Ne using molecular and pedigree data.
Collapse
Affiliation(s)
- Candela Ojeda-Marín
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Nora Formoso-Rafferty
- Departamento de Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
12
|
Arias KD, Gutiérrez JP, Fernández I, Álvarez I, Goyache F. Approaching autozygosity in a small pedigree of Gochu Asturcelta pigs. Genet Sel Evol 2023; 55:74. [PMID: 37880572 PMCID: PMC10601182 DOI: 10.1186/s12711-023-00846-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND In spite of the availability of single nucleotide polymorphism (SNP) array data, differentiation between observed homozygosity and that caused by mating between relatives (autozygosity) introduces major difficulties. Homozygosity estimators show large variation due to different causes, namely, Mendelian sampling, population structure, and differences among chromosomes. Therefore, the ascertainment of how inbreeding is reflected in the genome is still an issue. The aim of this research was to study the usefulness of genomic information for the assessment of genetic diversity in the highly endangered Gochu Asturcelta pig breed. Pedigree depth varied from 0 (founders) to 4 equivalent discrete generations (t). Four homozygosity parameters (runs of homozygosity, FROH; heterozygosity-rich regions, FHRR; Li and Horvitz's, FLH; and Yang and colleague's FYAN) were computed for each individual, adjusted for the variability in the base population (BP; six individuals) and further jackknifed over autosomes. Individual increases in homozygosity (depending on t) and increases in pairwise homozygosity (i.e., increase in the parents' mean) were computed for each individual in the pedigree, and effective population size (Ne) was computed for five subpopulations (cohorts). Genealogical parameters (individual inbreeding, individual increase in inbreeding, and Ne) were used for comparisons. RESULTS The mean F was 0.120 ± 0.074 and the mean BP-adjusted homozygosity ranged from 0.099 ± 0.081 (FLH) to 0.152 ± 0.075 (FYAN). After jackknifing, the mean values were slightly lower. The increase in pairwise homozygosity tended to be twofold higher than the corresponding individual increase in homozygosity values. When compared with genealogical estimates, estimates of Ne obtained using FYAN tended to have low root-mean-squared errors. However, Ne estimates based on increases in pairwise homozygosity using both FROH and FHRR estimates of genomic inbreeding had lower root-mean-squared errors. CONCLUSIONS Parameters characterizing homozygosity may not accurately depict losses of variability in small populations in which breeding policy prohibits matings between close relatives. After BP adjustment, the performance of FROH and FHRR was highly consistent. Assuming that an increase in homozygosity depends only on pedigree depth can lead to underestimating it in populations with shallow pedigrees. An increase in pairwise homozygosity computed from either FROH or FHRR is a promising approach for characterizing autozygosity.
Collapse
Affiliation(s)
- Katherine D Arias
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avda. Puerta de Hierro S/N, 28040, Madrid, Spain
| | - Iván Fernández
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Isabel Álvarez
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain
| | - Félix Goyache
- Área de Genética y Reproducción Animal, SERIDA-Deva, Camino de Rioseco 1225, 33394, Gijón, Spain.
| |
Collapse
|
13
|
Nishio M, Inoue K, Ogawa S, Ichinoseki K, Arakawa A, Fukuzawa Y, Okamura T, Kobayashi E, Taniguchi M, Oe M, Ishii K. Comparing pedigree and genomic inbreeding coefficients, and inbreeding depression of reproductive traits in Japanese Black cattle. BMC Genomics 2023; 24:376. [PMID: 37403068 DOI: 10.1186/s12864-023-09480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Pedigree-based inbreeding coefficients have been generally included in statistical models for genetic evaluation of Japanese Black cattle. The use of genomic data is expected to provide precise assessment of inbreeding level and depression. Recently, many measures have been used for genome-based inbreeding coefficients; however, with no consensus on which is the most appropriate. Therefore, we compared the pedigree- ([Formula: see text]) and multiple genome-based inbreeding coefficients, which were calculated from the genomic relationship matrix with observed allele frequencies ([Formula: see text]), correlation between uniting gametes ([Formula: see text]), the observed vs expected number of homozygous genotypes ([Formula: see text]), runs of homozygosity (ROH) segments ([Formula: see text]) and heterozygosity by descent segments ([Formula: see text]). We quantified inbreeding depression from estimating regression coefficients of inbreeding coefficients on three reproductive traits: age at first calving (AFC), calving difficulty (CD) and gestation length (GL) in Japanese Black cattle. RESULTS The highest correlations with [Formula: see text] were for [Formula: see text] (0.86) and [Formula: see text] (0.85) whereas [Formula: see text] and [Formula: see text] provided weak correlations with [Formula: see text], with range 0.33-0.55. Except for [Formula: see text] and [Formula: see text], there were strong correlations among genome-based inbreeding coefficients ([Formula: see text] 0.94). The estimates of regression coefficients of inbreeding depression for [Formula: see text] was 2.1 for AFC, 0.63 for CD and -1.21 for GL, respectively, but [Formula: see text] had no significant effects on all traits. Genome-based inbreeding coefficients provided larger effects on all reproductive traits than [Formula: see text]. In particular, for CD, all estimated regression coefficients for genome-based inbreeding coefficients were significant, and for GL, that for [Formula: see text] had a significant.. Although there were no significant effects when using overall genome-level inbreeding coefficients for AFC and GL, [Formula: see text] provided significant effects at chromosomal level in four chromosomes for AFC, three chromosomes for CD, and two chromosomes for GL. In addition, similar results were obtained for [Formula: see text]. CONCLUSIONS Genome-based inbreeding coefficients can capture more phenotypic variation than [Formula: see text]. In particular, [Formula: see text] and [Formula: see text] can be considered good estimators for quantifying inbreeding level and identifying inbreeding depression at the chromosome level. These findings might improve the quantification of inbreeding and breeding programs using genome-based inbreeding coefficients.
Collapse
Affiliation(s)
- Motohide Nishio
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan.
| | - Keiichi Inoue
- University of Miyazaki, Miyazaki, Miyazaki, 889-2192, Japan
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Shinichiro Ogawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Kasumi Ichinoseki
- National Livestock Breeding Center, Nishigo, Fukushima, 961-8511, Japan
| | - Aisaku Arakawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Yo Fukuzawa
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Toshihiro Okamura
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Eiji Kobayashi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Masaaki Taniguchi
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Mika Oe
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| | - Kazuo Ishii
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki, 3050901, Japan
| |
Collapse
|
14
|
Pérez‐Pereira N, Quesada H, Caballero A. An empirical evaluation of the estimation of inbreeding depression from molecular markers under suboptimal conditions. Evol Appl 2023; 16:1302-1315. [PMID: 37492144 PMCID: PMC10363801 DOI: 10.1111/eva.13568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 07/27/2023] Open
Abstract
Inbreeding depression (ID), the reduction in fitness due to inbreeding, is typically measured by the regression of the phenotypic values of individuals for a particular trait on their corresponding inbreeding coefficients (F). While genealogical records can provide these coefficients, they may be unavailable or incomplete, making molecular markers a useful alternative. The power to detect ID and its accuracy depend on the variation of F values of individuals, the sample sizes available, and the accuracy in the estimation of individual fitness traits and F values. In this study, we used Drosophila melanogaster to evaluate the effectiveness of molecular markers in estimating ID under suboptimal conditions. We generated two sets of 100 pairs of unrelated individuals from a large panmictic population and mated them for two generations to produce non-inbred and unrelated individuals (F = 0) and inbred individuals (full-sib progeny; F = 0.25). Using these expected genealogical F values, we calculated inbreeding depression for two fitness-related traits, pupae productivity and competitive fitness. We then sequenced the males from 17 non-inbred pairs and 17 inbred pairs to obtain their genomic inbreeding coefficients and estimate ID for the two traits. The scenario assumed was rather restrictive in terms of estimation of ID because: (1) the individuals belonged to the same generation of a large panmictic population, leading to low variation in individual F coefficients; (2) the sample sizes were small; and (3) the traits measured depended on both males and females while only males were sequenced. Despite the challenging conditions of our study, we found that molecular markers provided estimates of ID that were comparable to those obtained from simple pedigree estimations with larger sample sizes. The results therefore suggest that genomic measures of inbreeding are useful to provide estimates of inbreeding depression even under very challenging scenarios.
Collapse
Affiliation(s)
- Noelia Pérez‐Pereira
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| | - Humberto Quesada
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| | - Armando Caballero
- Centro de Investigación MariñaUniversidade de Vigo, Facultade de BioloxíaVigoSpain
| |
Collapse
|
15
|
Mousavi SF, Razmkabir M, Rostamzadeh J, Seyedabadi HR, Naboulsi R, Petersen JL, Lindgren G. Genetic diversity and signatures of selection in four indigenous horse breeds of Iran. Heredity (Edinb) 2023:10.1038/s41437-023-00624-7. [PMID: 37308718 PMCID: PMC10382556 DOI: 10.1038/s41437-023-00624-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/14/2023] Open
Abstract
Indigenous Iranian horse breeds were evolutionarily affected by natural and artificial selection in distinct phylogeographic clades, which shaped their genomes in several unique ways. The aims of this study were to evaluate the genetic diversity and genomewide selection signatures in four indigenous Iranian horse breeds. We evaluated 169 horses from Caspian (n = 21), Turkmen (n = 29), Kurdish (n = 67), and Persian Arabian (n = 52) populations, using genomewide genotyping data. The contemporary effective population sizes were 59, 98, 102, and 113 for Turkmen, Caspian, Persian Arabian, and Kurdish breeds, respectively. By analysis of the population genetic structure, we classified the north breeds (Caspian and Turkmen) and west/southwest breeds (Persian Arabian and Kurdish) into two phylogeographic clades reflecting their geographic origin. Using the de-correlated composite of multiple selection signal statistics based on pairwise comparisons, we detected a different number of significant SNPs under putative selection from 13 to 28 for the six pairwise comparisons (FDR < 0.05). The identified SNPs under putative selection coincided with genes previously associated with known QTLs for morphological, adaptation, and fitness traits. Our results showed HMGA2 and LLPH as strong candidate genes for height variation between Caspian horses with a small size and the other studied breeds with a medium size. Using the results of studies on human height retrieved from the GWAS catalog, we suggested 38 new putative candidate genes under selection. These results provide a genomewide map of selection signatures in the studied breeds, which represent valuable information for formulating genetic conservation and improved breeding strategies for the breeds.
Collapse
Affiliation(s)
- Seyedeh Fatemeh Mousavi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammad Razmkabir
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Jalal Rostamzadeh
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Hamid-Reza Seyedabadi
- Animal Science Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Rakan Naboulsi
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institute, Tomtebodavägen 18A, 17177, Stockholm, Sweden
| | | | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.
- Center for Animal Breeding and Genetics, Department of Biosystems, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|