1
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble and functional membrane protein analogues. Nature 2024; 631:449-458. [PMID: 38898281 PMCID: PMC11236705 DOI: 10.1038/s41586-024-07601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a substantial challenge1. Here we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from G-protein-coupled receptors2, are not found in the soluble proteome, and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses demonstrate the high thermal stability of the designs, and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, as a proof of concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we have designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
Affiliation(s)
- Casper A Goverde
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Martin Pacesa
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Goldbach
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lars J Dornfeld
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Petra E M Balbi
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sandrine Georgeon
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stéphane Rosset
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Srajan Kapoor
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Jagrity Choudhury
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Justas Dauparas
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Christian Schellhaas
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Simon Kozlov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Sergey Ovchinnikov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alex J Vecchio
- Department of Structural Biology, University at Buffalo, Buffalo, NY, USA
| | - Bruno E Correia
- Laboratory of Protein Design and Immunoengineering, École Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
2
|
Goverde CA, Pacesa M, Goldbach N, Dornfeld LJ, Balbi PEM, Georgeon S, Rosset S, Kapoor S, Choudhury J, Dauparas J, Schellhaas C, Kozlov S, Baker D, Ovchinnikov S, Vecchio AJ, Correia BE. Computational design of soluble functional analogues of integral membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.09.540044. [PMID: 38496615 PMCID: PMC10942269 DOI: 10.1101/2023.05.09.540044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
De novo design of complex protein folds using solely computational means remains a significant challenge. Here, we use a robust deep learning pipeline to design complex folds and soluble analogues of integral membrane proteins. Unique membrane topologies, such as those from GPCRs, are not found in the soluble proteome and we demonstrate that their structural features can be recapitulated in solution. Biophysical analyses reveal high thermal stability of the designs and experimental structures show remarkable design accuracy. The soluble analogues were functionalized with native structural motifs, standing as a proof-of-concept for bringing membrane protein functions to the soluble proteome, potentially enabling new approaches in drug discovery. In summary, we designed complex protein topologies and enriched them with functionalities from membrane proteins, with high experimental success rates, leading to a de facto expansion of the functional soluble fold space.
Collapse
|
3
|
Li Y, Park HJ, Xiu H, Akoh CC, Kong F. Predicting intestinal effective permeability of different transport mechanisms: Comparing ex vivo porcine and in vitro dialysis models. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Li DD, Wang JL, Liu Y, Li YZ, Zhang Z. Expanded analyses of the functional correlations within structural classifications of glycoside hydrolases. Comput Struct Biotechnol J 2021; 19:5931-5942. [PMID: 34849197 PMCID: PMC8602953 DOI: 10.1016/j.csbj.2021.10.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 01/01/2023] Open
Abstract
Glycoside hydrolases (GHs) are greatly diverse in sequences and functions, but systematic studies of GH relationships based on structural information are lacking. Here, we report that GHs have multiple evolutionary origins and are structurally derived from 27 homologous superfamilies and 16 folds, but GHs are highly biased to distribute in a few superfamilies and folds. Six of these superfamilies are widely encoded by archaea, bacteria, and eukaryotes, indicating that they may be the most ancient in origin. Most superfamilies vary in enzyme function, and some, such as the superfamilies of (β/α)8-barrel and (α/α)6-barrel structures, exhibit extreme functional diversity; this is highly positively correlated with sequence diversity. More than one-third of glycosidase activities show a phenomenon of convergent evolution, especially the degradation functions of GHs on polysaccharides. The GHs of most superfamilies have relatively narrow environmental distributions, normally with the highest abundance in host-associated environments and a distribution preference for moderate low-temperature and acidic environments. Overall, our expanded analysis facilitates an understanding of complex GH sequence-structure-function relationships and may guide our screening and engineering of GHs.
Collapse
Affiliation(s)
- Dan-Dan Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jin-Lan Wang
- National Administration of Health Data, Jinan 250002, China
| | - Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China.,Suzhou Research Institute, Shandong University, Suzhou 215123, China
| |
Collapse
|
5
|
Romero-Romero S, Costas M, Silva Manzano DA, Kordes S, Rojas-Ortega E, Tapia C, Guerra Y, Shanmugaratnam S, Rodríguez-Romero A, Baker D, Höcker B, Fernández-Velasco DA. The Stability Landscape of de novo TIM Barrels Explored by a Modular Design Approach. J Mol Biol 2021; 433:167153. [PMID: 34271011 PMCID: PMC8404036 DOI: 10.1016/j.jmb.2021.167153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 11/25/2022]
Abstract
The TIM barrel is a versatile fold to understand structure-stability relationships. A collection of de novo TIM barrels with improved hydrophobic cores was designed. DeNovoTIMs are reversible in chemical and thermal unfolding, which is uncommon in TIM barrels. Epistatic effects play a central role in DeNovoTIMs stabilization. DeNovoTIMs navigate a previously uncharted region of the stability landscape.
The ability to design stable proteins with custom-made functions is a major goal in biochemistry with practical relevance for our environment and society. Understanding and manipulating protein stability provide crucial information on the molecular determinants that modulate structure and stability, and expand the applications of de novo proteins. Since the (β/⍺)8-barrel or TIM-barrel fold is one of the most common functional scaffolds, in this work we designed a collection of stable de novo TIM barrels (DeNovoTIMs), using a computational fixed-backbone and modular approach based on improved hydrophobic packing of sTIM11, the first validated de novo TIM barrel, and subjected them to a thorough folding analysis. DeNovoTIMs navigate a region of the stability landscape previously uncharted by natural TIM barrels, with variations spanning 60 degrees in melting temperature and 22 kcal per mol in conformational stability throughout the designs. Significant non-additive or epistatic effects were observed when stabilizing mutations from different regions of the barrel were combined. The molecular basis of epistasis in DeNovoTIMs appears to be related to the extension of the hydrophobic cores. This study is an important step towards the fine-tuned modulation of protein stability by design.
Collapse
Affiliation(s)
- Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico; Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Daniel-Adriano Silva Manzano
- Department of Biochemistry, University of Washington, 98195 Seattle, USA; Institute for Protein Design, University of Washington, 98195 Seattle, USA
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Erendira Rojas-Ortega
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Cinthya Tapia
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Yasel Guerra
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | | | - Adela Rodríguez-Romero
- Instituto de Química, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - David Baker
- Department of Biochemistry, University of Washington, 98195 Seattle, USA; Institute for Protein Design, University of Washington, 98195 Seattle, USA.
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| | - D Alejandro Fernández-Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|
6
|
Romero-Romero S, Kordes S, Michel F, Höcker B. Evolution, folding, and design of TIM barrels and related proteins. Curr Opin Struct Biol 2021; 68:94-104. [PMID: 33453500 PMCID: PMC8250049 DOI: 10.1016/j.sbi.2020.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022]
Abstract
Proteins are chief actors in life that perform a myriad of exquisite functions. This diversity has been enabled through the evolution and diversification of protein folds. Analysis of sequences and structures strongly suggest that numerous protein pieces have been reused as building blocks and propagated to many modern folds. This information can be traced to understand how the protein world has diversified. In this review, we discuss the latest advances in the analysis of protein evolutionary units, and we use as a model system one of the most abundant and versatile topologies, the TIM-barrel fold, to highlight the existing common principles that interconnect protein evolution, structure, folding, function, and design.
Collapse
Affiliation(s)
| | - Sina Kordes
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Florian Michel
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
7
|
Vrancken JPM, Tame JRH, Voet ARD. Development and applications of artificial symmetrical proteins. Comput Struct Biotechnol J 2020; 18:3959-3968. [PMID: 33335692 PMCID: PMC7734218 DOI: 10.1016/j.csbj.2020.10.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 12/28/2022] Open
Abstract
Since the determination of the first molecular models of proteins there has been interest in creating proteins artificially, but such methods have only become widely successful in the last decade. Gradual improvements over a long period of time have now yielded numerous examples of non-natural proteins, many of which are built from repeated elements. In this review we discuss the design of such symmetrical proteins and their various applications in chemistry and medicine.
Collapse
Affiliation(s)
- Jeroen P M Vrancken
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| | - Jeremy R H Tame
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro, Yokohama, Kanagawa 230-0045, Japan
| | - Arnout R D Voet
- Laboratory of Biomolecular Modelling and Design, Department of Chemistry, KU Leuven, Celestijnenlaan 200G, 3001 Leuven, Belgium
| |
Collapse
|
8
|
Gao S, Thompson EJ, Barrow SL, Zhang W, Iavarone AT, Klinman JP. Hydrogen-Deuterium Exchange within Adenosine Deaminase, a TIM Barrel Hydrolase, Identifies Networks for Thermal Activation of Catalysis. J Am Chem Soc 2020; 142:19936-19949. [PMID: 33181018 DOI: 10.1021/jacs.0c07866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Proteins are intrinsically flexible macromolecules that undergo internal motions with time scales spanning femtoseconds to milliseconds. These fluctuations are implicated in the optimization of reaction barriers for enzyme catalyzed reactions. Time, temperature, and mutation dependent hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) has been previously employed to identify spatially resolved, catalysis-linked dynamical regions of enzymes. We now extend this technique to pursue the correlation of protein flexibility and chemical reactivity within the diverse and widespread TIM barrel proteins, targeting murine adenosine deaminase (mADA) that catalyzes the irreversible deamination of adenosine to inosine and ammonia. Following a structure-function analysis of rate and activation energy for a series of mutations at a second sphere phenylalanine positioned in proximity to the bound substrate, the catalytically impaired Phe61Ala with an elevated activation energy (Ea = 7.5 kcal/mol) and the wild type (WT) mADA (Ea = 5.0 kcal/mol) were selected for HDX-MS experiments. The rate constants and activation energies of HDX for peptide segments are quantified and used to assess mutation-dependent changes in local and distal motions. Analyses reveal that approximately 50% of the protein sequence of Phe61Ala displays significant changes in the temperature dependence of HDX behaviors, with the dominant change being an increase in protein flexibility. Utilizing Phe61Ile, which displays the same activation energy for kcat as WT, as a control, we were able to further refine the HDX analysis, highlighting the regions of mADA that are altered in a functionally relevant manner. A map is constructed that illustrates the regions of protein that are proposed to be essential for the thermal optimization of active site configurations that dominate reaction barrier crossings in the native enzyme.
Collapse
Affiliation(s)
| | | | | | - Wenju Zhang
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | | | | |
Collapse
|
9
|
Ding D, Li J, Bai D, Fang H, Lin J, Zhang D. Biosensor-based monitoring of the central metabolic pathway metabolites. Biosens Bioelectron 2020; 167:112456. [DOI: 10.1016/j.bios.2020.112456] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/31/2022]
|
10
|
Chan YH, Zeldovich KB, Matthews CR. An allosteric pathway explains beneficial fitness in yeast for long-range mutations in an essential TIM barrel enzyme. Protein Sci 2020; 29:1911-1923. [PMID: 32643222 PMCID: PMC7454521 DOI: 10.1002/pro.3911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 11/06/2022]
Abstract
Protein evolution proceeds by a complex response of organismal fitness to mutations that can simultaneously affect protein stability, structure, and enzymatic activity. To probe the relationship between genotype and phenotype, we chose a fundamental paradigm for protein evolution, folding, and design, the (βα)8 TIM barrel fold. Here, we demonstrate the role of long-range allosteric interactions in the adaptation of an essential hyperthermophilic TIM barrel enzyme to mesophilic conditions in a yeast host. Beneficial fitness effects observed with single and double mutations of the canonical βα-hairpin clamps and the α-helical shell distal to the active site revealed an underlying energy network between opposite faces of the cylindrical β-barrel. We experimentally determined the fitness of multiple mutants in the energetic phase plane, contrasting the energy barrier of the chemical reaction and the folding free energy of the protein. For the system studied, the reaction energy barrier was the primary determinant of organism fitness. Our observations of long-range epistatic interactions uncovered an allosteric pathway in an ancient and ubiquitous enzyme that may provide a novel way of designing proteins with a desired activity and stability profile.
Collapse
Affiliation(s)
- Yvonne H Chan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Sanofi Pasteur, Cambridge, Massachusetts, USA
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Sanofi Pasteur, Cambridge, Massachusetts, USA
| | - Charles R Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
11
|
Agrawal P, Mishra G, Raghava GPS. SAMbinder: A Web Server for Predicting S-Adenosyl-L-Methionine Binding Residues of a Protein From Its Amino Acid Sequence. Front Pharmacol 2020; 10:1690. [PMID: 32082172 PMCID: PMC7002541 DOI: 10.3389/fphar.2019.01690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/24/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION S-adenosyl-L-methionine (SAM) is an essential cofactor present in the biological system and plays a key role in many diseases. There is a need to develop a method for predicting SAM binding sites in a protein for designing drugs against SAM associated disease. To the best of our knowledge, there is no method that can predict the binding site of SAM in a given protein sequence. RESULT This manuscript describes a method SAMbinder, developed for predicting SAM interacting residue in a protein from its primary sequence. All models were trained, tested, and evaluated on 145 SAM binding protein chains where no two chains have more than 40% sequence similarity. Firstly, models were developed using different machine learning techniques on a balanced data set containing 2,188 SAM interacting and an equal number of non-interacting residues. Our random forest based model developed using binary profile feature got maximum Matthews Correlation Coefficient (MCC) 0.42 with area under receiver operating characteristics (AUROC) 0.79 on the validation data set. The performance of our models improved significantly from MCC 0.42 to 0.61, when evolutionary information in the form of the position-specific scoring matrix (PSSM) profile is used as a feature. We also developed models on a realistic data set containing 2,188 SAM interacting and 40,029 non-interacting residues and got maximum MCC 0.61 with AUROC of 0.89. In order to evaluate the performance of our models, we used internal as well as external cross-validation technique. AVAILABILITY AND IMPLEMENTATION https://webs.iiitd.edu.in/raghava/sambinder/.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Bioinformatics Center, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Gaurav Mishra
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Department of Electrical Engineering, Shiv Nadar University, Greater Noida, India
| | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
12
|
Nagarajan D, Roy N, Kulkarni O, Nanajkar N, Datey A, Ravichandran S, Thakur C, T. S, Aprameya IV, Sarma SP, Chakravortty D, Chandra N. Ω76: A designed antimicrobial peptide to combat carbapenem- and tigecycline-resistant Acinetobacter baumannii. SCIENCE ADVANCES 2019; 5:eaax1946. [PMID: 31355341 PMCID: PMC6656545 DOI: 10.1126/sciadv.aax1946] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/17/2019] [Indexed: 05/12/2023]
Abstract
Drug resistance is a public health concern that threatens to undermine decades of medical progress. ESKAPE pathogens cause most nosocomial infections, and are frequently resistant to carbapenem antibiotics, usually leaving tigecycline and colistin as the last treatment options. However, increasing tigecycline resistance and colistin's nephrotoxicity severely restrict use of these antibiotics. We have designed antimicrobial peptides using a maximum common subgraph approach. Our best peptide (Ω76) displayed high efficacy against carbapenem and tigecycline-resistant Acinetobacter baumannii in mice. Mice treated with repeated sublethal doses of Ω76 displayed no signs of chronic toxicity. Sublethal Ω76 doses co-administered alongside sublethal colistin doses displayed no additive toxicity. These results indicate that Ω76 can potentially supplement or replace colistin, especially where nephrotoxicity is a concern. To our knowledge, no other existing antibiotics occupy this clinical niche. Mechanistically, Ω76 adopts an α-helical structure in membranes, causing rapid membrane disruption, leakage, and bacterial death.
Collapse
Affiliation(s)
- Deepesh Nagarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Natasha Roy
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore 560012, India
| | - Omkar Kulkarni
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neha Nanajkar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Akshay Datey
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | - Chandrani Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sandeep T.
- Department of Microbiology, M.S. Ramaiah Medical College, Bangalore 560054, India
| | | | - Siddhartha P. Sarma
- Molecular Biophysics Unit (MBU), Indian Institute of Science, Bangalore 560012, India
- NMR Research Center, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
- Corresponding author. (N.C.); (D.C.)
| | - Nagasuma Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
- Corresponding author. (N.C.); (D.C.)
| |
Collapse
|
13
|
βαβ Super-Secondary Motifs: Sequence, Structural Overview, and Pursuit of Potential Autonomously Folding βαβ Sequences from (β/α) 8/TIM Barrels. Methods Mol Biol 2019; 1958:221-236. [PMID: 30945221 DOI: 10.1007/978-1-4939-9161-7_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
βαβ super-secondary structures constitute the basic building blocks of (β/α)8 class of proteins. Despite the success in designing super-secondary structures, till date, there is not a single example of a natural βαβ sequence known to fold in isolation. In this chapter, to address the finding the "needles" in the haystack scenario, we have combined the sequence preferences and structural features of independent βαβ motifs, dictated by natural selection, with rationally derived parameters from a designed βαβ motif adopting stable fold in solution. Guided by this approach, a set of potential βαβ sequences from (β/α)8/TIM barrels are proposed as likely candidates for autonomously folding based on the assessment of their foldability.
Collapse
|
14
|
Nagarajan D, Sukumaran S, Deka G, Krishnamurthy K, Atreya HS, Chandra N. Design of a heme-binding peptide motif adopting a β-hairpin conformation. J Biol Chem 2018; 293:9412-9422. [PMID: 29695501 DOI: 10.1074/jbc.ra118.001768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/19/2018] [Indexed: 11/06/2022] Open
Abstract
Heme-binding proteins constitute a large family of catalytic and transport proteins. Their widespread presence as globins and as essential oxygen and electron transporters, along with their diverse enzymatic functions, have made them targets for protein design. Most previously reported designs involved the use of α-helical scaffolds, and natural peptides also exhibit a strong preference for these scaffolds. However, the reason for this preference is not well-understood, in part because alternative protein designs, such as those with β-sheets or hairpins, are challenging to perform. Here, we report the computational design and experimental validation of a water-soluble heme-binding peptide, Pincer-1, composed of predominantly β-scaffold secondary structures. Such heme-binding proteins are rarely observed in nature, and by designing such a scaffold, we simultaneously increase the known fold space of heme-binding proteins and expand the limits of computational design methods. For a β-scaffold, two tryptophan zipper β-hairpins sandwiching a heme molecule were linked through an N-terminal cysteine disulfide bond. β-Hairpin orientations and residue selection were performed computationally. Heme binding was confirmed through absorbance experiments and surface plasmon resonance experiments (KD = 730 ± 160 nm). CD and NMR experiments validated the β-hairpin topology of the designed peptide. Our results indicate that a helical scaffold is not essential for heme binding and reveal the first designed water-soluble, heme-binding β-hairpin peptide. This peptide could help expand the search for and design space to cytoplasmic heme-binding proteins.
Collapse
Affiliation(s)
| | | | - Geeta Deka
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
15
|
Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold. Interdiscip Sci 2017; 10:805-812. [DOI: 10.1007/s12539-017-0250-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 06/16/2017] [Accepted: 07/01/2017] [Indexed: 11/25/2022]
|
16
|
Chan YH, Venev SV, Zeldovich KB, Matthews CR. Correlation of fitness landscapes from three orthologous TIM barrels originates from sequence and structure constraints. Nat Commun 2017; 8:14614. [PMID: 28262665 PMCID: PMC5343507 DOI: 10.1038/ncomms14614] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/11/2017] [Indexed: 02/07/2023] Open
Abstract
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. The TIM barrel fold is an evolutionarily conserved motif found in proteins with a variety of enzymatic functions. Here the authors explore the fitness landscape of the TIM barrel protein IGPS and uncover evolutionary constraints on both sequence and structure, accompanied by long range allosteric interactions.
Collapse
Affiliation(s)
- Yvonne H Chan
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Sergey V Venev
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| | - Konstantin B Zeldovich
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, Massachusetts 01605, USA
| | - C Robert Matthews
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, USA
| |
Collapse
|
17
|
DeBenedictis EP, Ma D, Keten S. Structural predictions for curli amyloid fibril subunits CsgA and CsgB. RSC Adv 2017. [DOI: 10.1039/c7ra08030a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CsgA are the building blocks of curli fibrils.
Collapse
Affiliation(s)
- E. P. DeBenedictis
- Department of Civil and Environmental Engineering and Mechanical Engineering
- Northwestern University
- Evanston
- USA
| | - D. Ma
- Department of Civil and Environmental Engineering and Mechanical Engineering
- Northwestern University
- Evanston
- USA
| | - S. Keten
- Department of Civil and Environmental Engineering and Mechanical Engineering
- Northwestern University
- Evanston
- USA
| |
Collapse
|
18
|
Zhong C, Wei P, Zhang YHP. Enhancing functional expression of codon-optimized heterologous enzymes in Escherichia coli BL21(DE3) by selective introduction of synonymous rare codons. Biotechnol Bioeng 2016; 114:1054-1064. [PMID: 27943233 DOI: 10.1002/bit.26238] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Rare codon in a heterologous gene may cause premature termination of protein synthesis, misincorporation of amino acids, and/or slow translation of mRNA, decreasing the heterologous protein expression. However, its hypothetical function pertaining to functional protein folding has been barely reported. Here, we investigated the effects of selective introduction of synonymous rare codons (SRCs) to two codon-optimized (i.e., rare codon-free) genes sucrose phosphorylase (SP) gene from Thermoanaerobacterium thermosaccharolyticum and amidohydrolase gene from Streptomyces caatingaensis on their expression levels in Escherichia coli BL21(DE3). We investigated the introduction of a single SRC to the coding regions of alpha-helix, beta-strand, or linker in the first half of rare codon-free sp and ah gene. The introduction of a single SRC in the beginning of the coding regions of beta-strand greatly enhanced their soluble expression levels as compared to the other regions. Also, we applied directed evolution to test multi-SRC-containing sp gene mutants for enhanced soluble SP expression levels. To easily identify the soluble SP expression level of colonies growing on Petri dishes, mCherry fluorescent protein was used as a SP-folding reporter when it was fused to the 3' end of the sp gene mutant libraries. After three rounds of screening, the best sp gene mutant containing nine SRCs exhibited an approximately six-fold enhancement in soluble protein expression level as compared to the wild-type and rare codon-free sp control. This study suggests that the selective introduction of SRCs can attenuate translation at specific points and such discontinuous attenuation can temporally separate the translation of segments of the peptide chains and actively coordinates their co-translational folding, resulting in enhanced functional protein expression. Biotechnol. Bioeng. 2017;114: 1054-1064. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chao Zhong
- Department of Biological Systems Engineering, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Yi-Heng Percival Zhang
- Department of Biological Systems Engineering, Virginia Tech, 304 Seitz Hall, Blacksburg, Virginia, 24061.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
19
|
Mindrebo JT, Nartey CM, Seto Y, Burkart MD, Noel JP. Unveiling the functional diversity of the alpha/beta hydrolase superfamily in the plant kingdom. Curr Opin Struct Biol 2016; 41:233-246. [PMID: 27662376 PMCID: PMC5687975 DOI: 10.1016/j.sbi.2016.08.005] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 08/21/2016] [Accepted: 08/22/2016] [Indexed: 12/13/2022]
Abstract
The alpha/beta hydrolase (ABH) superfamily is a widespread and functionally malleable protein fold recognized for its diverse biochemical activities across all three domains of life. ABH enzymes possess unexpected catalytic activity in the green plant lineage through selective alterations in active site architecture and chemistry. Furthermore, the ABH fold serves as the core structure for phytohormone and ligand receptors in the gibberellin, strigolactone, and karrikin signaling pathways in plants. Despite recent discoveries, the ABH family is sparsely characterized in plants, a sessile kingdom known to evolve complex and specialized chemical adaptations as survival responses to widely varying biotic and abiotic ecologies. This review calls attention to the ABH superfamily in the plant kingdom to highlight the functional adaptability of the ABH fold.
Collapse
Affiliation(s)
- Jeffrey T Mindrebo
- Department of Chemistry and Biochemistry, The University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Charisse M Nartey
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yoshiya Seto
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, The University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Joseph P Noel
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
20
|
Sharma P, Kaila P, Guptasarma P. Creation of active TIM barrel enzymes through genetic fusion of half-barrel domain constructs derived from two distantly related glycosyl hydrolases. FEBS J 2016; 283:4340-4356. [PMID: 27749025 DOI: 10.1111/febs.13927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 09/10/2016] [Accepted: 10/14/2016] [Indexed: 11/26/2022]
Abstract
Diverse unrelated enzymes that adopt the beta/alpha (or TIM) barrel topology display similar arrangements of beta/alpha units placed in a radial eight-fold symmetry around the barrel's axis. The TIM barrel was originally thought to be a single structural domain; however, it is now thought that TIM barrels arose from duplication and fusion of smaller half-barrels consisting of four beta/alpha units. We describe here the design, expression and purification, as well as characterization of folding, activity and stability, of chimeras of two TIM barrel glycosyl hydrolases, made by fusing different half-barrel domains derived from an endoglucanase from Clostridium cellulolyticum, CelCCA and a beta-glucosidase from Pyrococcus furiosus, CelB. We show that after refolding following purification from inclusion bodies, the two half-barrel fusion chimeras (CelCCACelB and CelBCelCCA) display catalytic activity although they assemble into large soluble oligomeric aggregated species containing chains of mixed beta and alpha structure. CelBCelCCA displays hyperthermophile-like structural stability as well as significant stability to chemical denaturation (Cm of 2.6 m guanidinium hydrochloride), whereas CelCCACelB displays mesophile-like stability (Tm of ~ 71 °C). The endoglucanase activities of both chimeras are an order of magnitude lower than those of CelB or CelCCA, whereas the beta-glucosidase activity of CelBCelCCA is about two orders of magnitude lower than that of CelB. The chimera CelCCACelB shows no beta-glucosidase activity. Our results demonstrate that half-barrel domains from unrelated sources can fold, assemble and function, with scope for improvement. ENZYME Pyrococcus furiosus beta-glucosidase (CelB, EC: 3.2.1.21). Clostridium cellulolyticum endoglucanase A (CelCCA, EC: 3.2.1.4).
Collapse
Affiliation(s)
- Prerna Sharma
- Department of Biological Sciences, Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, India
| | - Pallavi Kaila
- Department of Biological Sciences, Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, India
| | - Purnananda Guptasarma
- Department of Biological Sciences, Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, India
| |
Collapse
|
21
|
Using natural sequences and modularity to design common and novel protein topologies. Curr Opin Struct Biol 2016; 38:26-36. [PMID: 27270240 DOI: 10.1016/j.sbi.2016.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Protein design is still a challenging undertaking, often requiring multiple attempts or iterations for success. Typically, the source of failure is unclear, and scoring metrics appear similar between successful and failed cases. Nevertheless, the use of sequence statistics, modularity and symmetry from natural proteins, combined with computational design both at the coarse-grained and atomistic levels is propelling a new wave of design efforts to success. Here we highlight recent examples of design, showing how the wealth of natural protein sequence and topology data may be leveraged to reduce the search space and increase the likelihood of achieving desired outcomes.
Collapse
|
22
|
|
23
|
Huang PS, Feldmeier K, Parmeggiani F, Velasco DAF, Höcker B, Baker D. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat Chem Biol 2015; 12:29-34. [PMID: 26595462 PMCID: PMC4684731 DOI: 10.1038/nchembio.1966] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/07/2015] [Indexed: 12/26/2022]
Abstract
Despite efforts for over 25 years, de novo protein design has not succeeded in achieving the TIM-barrel fold. Here we describe the computational design of four-fold symmetrical (β/α)8 barrels guided by geometrical and chemical principles. Experimental characterization of 33 designs revealed the importance of side chain-backbone hydrogen bonds for defining the strand register between repeat units. The X-ray crystal structure of a designed thermostable 184-residue protein is nearly identical to that of the designed TIM-barrel model. PSI-BLAST searches do not identify sequence similarities to known TIM-barrel proteins, and sensitive profile-profile searches indicate that the design sequence is distant from other naturally occurring TIM-barrel superfamilies, suggesting that Nature has sampled only a subset of the sequence space available to the TIM-barrel fold. The ability to design TIM barrels de novo opens new possibilities for custom-made enzymes.
Collapse
Affiliation(s)
- Po-Ssu Huang
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Kaspar Feldmeier
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Fabio Parmeggiani
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | | | - Birte Höcker
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA.,Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|