1
|
Azad I, Khan T, Ahmad N, Khan AR, Akhter Y. Updates on drug designing approach through computational strategies: a review. Future Sci OA 2023; 9:FSO862. [PMID: 37180609 PMCID: PMC10167725 DOI: 10.2144/fsoa-2022-0085] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
The drug discovery and development (DDD) process in pursuit of novel drug candidates is a challenging procedure requiring lots of time and resources. Therefore, computer-aided drug design (CADD) methodologies are used extensively to promote proficiency in drug development in a systematic and time-effective manner. The point in reference is SARS-CoV-2 which has emerged as a global pandemic. In the absence of any confirmed drug moiety to treat the infection, the science fraternity adopted hit and trial methods to come up with a lead drug compound. This article is an overview of the virtual methodologies, which assist in finding novel hits and help in the progression of drug development in a short period with a specific medicinal solution.
Collapse
Affiliation(s)
- Iqbal Azad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Naseem Ahmad
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow, 226026, UP, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, UP, 2260025, India
| |
Collapse
|
2
|
Rabha A, Singh A, Grover S, Kumari A, Pandey B, Grover A. Structural basis for isoniazid resistance in KatG double mutants of Mycobacterium tuberculosis. Microb Pathog 2019; 129:152-160. [PMID: 30731190 DOI: 10.1016/j.micpath.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/02/2023]
Abstract
The failure of drugs for effective treatment against infectious diseases can be attributed to resistant forms of causative agents. The evasive nature of Mycobacterium tuberculosis is partly associated to its physical features, such as having a thick cell wall and incorporation of beneficial mutations leading to drug resistance. The pro drug Isoniazid (INH) interacts with an enzyme catalase peroxidase to get converted into its active form and upon activation stops the cell wall synthesis thus killing the Mycobacterium. The most common mutation i.e. S315T leads to high degree of drug resistance by virtue of its position in the active site. Here, we have characterized the prominent attributes of two double mutant isolates S315 T/D194G and S315T/M624V which are multi drug resistant and extremely drug resistant, respectively. Protein models were generated using the crystal structure which were then subjected to energy minimization and long term molecular dynamics simulations. Further, computational analysis showed decreasing ability of INH binding to the mutants in order of: Native > S315T/D194G > S315T/M624V. Also, a trend was observed that as the docking score and binding area decreased, there was a significant increase in the distortion of the 3D geometry of the mutants as observed by PCA analysis.
Collapse
Affiliation(s)
- Aneesh Rabha
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Aditi Singh
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, 110070, India
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, 110016, India
| | - Anchala Kumari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India; Department of Biotechnology, TERI School of Advanced Studies, Vasant Kunj, New Delhi, 110070, India
| | - Bharati Pandey
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
3
|
Singh S, Malhotra AG, Jha M, Pandey KM. Implications of protein conformations to modifying novel inhibitor Oseltamivir for 2009 H1N1 influenza A virus by simulation and docking studies. Virusdisease 2018; 29:461-467. [PMID: 30539048 DOI: 10.1007/s13337-018-0480-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 07/28/2018] [Indexed: 12/18/2022] Open
Abstract
Recently three FDA approved existing drugs, namely-Oseltamivir, Peramivir and Zanamivir, used against Neuraminidase (NA) for the inhibitory effect on the process of viral progeny release to inhibit infection. All NA subtypes has been divided into two groups (Group 1 and Group 2) based on phylogenetic study. Oseltamivir and Zanamivir drugs are designed for Group 2 NA but are also used against 2009 H1N1 NA that lies in Group 1. There is no specific drug available for H1N1 and, consequently, there is an urgent requirement for the same. The structure-based drug design and fragment-based drug design methods are used for building more effective and economic drug molecules. In this work, the fragment-based drug development followed by fragment evolution on the basis of protein conformations after every 10 ns of 100 ns simulation. There are two analogs of Oseltamivir acid drug discovered in this study. Only analog 1, along with Oseltamivir acid, were then docked with the native protein. The analog 1 (benzoic acid inhibitor 11) exhibited higher binding affinity value of - 10.70 kcal/mol in comparison to its predecessor. The concept of conformations and protein-ligand interactions can be useful in designing new drugs for H1N1 with high specific binding.
Collapse
Affiliation(s)
- Sudha Singh
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Anvita Gupta Malhotra
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Mohit Jha
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Khushhali Menaria Pandey
- Department of Biological Science and Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| |
Collapse
|
4
|
Lin Z, Li Y, Guo M, Xiao M, Wang C, Zhao M, Xu T, Xia Y, Zhu B. Inhibition of H1N1 influenza virus by selenium nanoparticles loaded with zanamivir through p38 and JNK signaling pathways. RSC Adv 2017. [DOI: 10.1039/c7ra06477b] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Zanamivir is an effective drug for influenza virus infection, but strong molecular polarity and aqueous solubility limit its clinical application.
Collapse
Affiliation(s)
- Zhengfang Lin
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Yinghua Li
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Min Guo
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Misi Xiao
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Changbing Wang
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Mingqi Zhao
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Tiantian Xu
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Yu Xia
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| | - Bing Zhu
- Center Laboratory
- Guangzhou Women and Children's Medical Centre
- Guangzhou Medical University
- Guangzhou
- P. R. China
| |
Collapse
|
5
|
Schönbach C, Verma C, Bond PJ, Ranganathan S. Bioinformatics and systems biology research update from the 15 th International Conference on Bioinformatics (InCoB2016). BMC Bioinformatics 2016; 17:524. [PMID: 28155668 PMCID: PMC5259976 DOI: 10.1186/s12859-016-1409-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The International Conference on Bioinformatics (InCoB) has been publishing peer-reviewed conference papers in BMC Bioinformatics since 2006. Of the 44 articles accepted for publication in supplement issues of BMC Bioinformatics, BMC Genomics, BMC Medical Genomics and BMC Systems Biology, 24 articles with a bioinformatics or systems biology focus are reviewed in this editorial. InCoB2017 is scheduled to be held in Shenzen, China, September 20-22, 2017.
Collapse
Affiliation(s)
- Christian Schönbach
- International Research Center for Medical Sciences, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Chandra Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore, 138671 Singapore
| | - Peter J. Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore, 138671 Singapore
| | - Shoba Ranganathan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109 Australia
| |
Collapse
|