1
|
Asediya VS, Anjaria PA, Mathakiya RA, Koringa PG, Nayak JB, Bisht D, Fulmali D, Patel VA, Desai DN. Vaccine development using artificial intelligence and machine learning: A review. Int J Biol Macromol 2024; 282:136643. [PMID: 39426778 DOI: 10.1016/j.ijbiomac.2024.136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
The COVID-19 pandemic has underscored the critical importance of effective vaccines, yet their development is a challenging and demanding process. It requires identifying antigens that elicit protective immunity, selecting adjuvants that enhance immunogenicity, and designing delivery systems that ensure optimal efficacy. Artificial intelligence (AI) can facilitate this process by using machine learning methods to analyze large and diverse datasets, suggest novel vaccine candidates, and refine their design and predict their performance. This review explores how AI can be applied to various aspects of vaccine development, such as predicting immune response from protein sequences, discovering adjuvants, optimizing vaccine doses, modeling vaccine supply chains, and predicting protein structures. We also address the challenges and ethical issues that emerge from the use of AI in vaccine development, such as data privacy, algorithmic bias, and health data sensitivity. We contend that AI has immense potential to accelerate vaccine development and respond to future pandemics, but it also requires careful attention to the quality and validity of the data and methods used.
Collapse
Affiliation(s)
| | | | | | | | | | - Deepanker Bisht
- Indian Veterinary Research Institute, Izatnagar, U.P., India
| | | | | | | |
Collapse
|
2
|
Hamed AA, Fandy TE, Tkaczuk KL, Verspoor K, Lee BS. COVID-19 Drug Repurposing: A Network-Based Framework for Exploring Biomedical Literature and Clinical Trials for Possible Treatments. Pharmaceutics 2022; 14:567. [PMID: 35335943 PMCID: PMC8955179 DOI: 10.3390/pharmaceutics14030567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With the Coronavirus becoming a new reality of our world, global efforts continue to seek answers to many questions regarding the spread, variants, vaccinations, and medications. Particularly, with the emergence of several strains (e.g., Delta, Omicron), vaccines will need further development to offer complete protection against the new variants. It is critical to identify antiviral treatments while the development of vaccines continues. In this regard, the repurposing of already FDA-approved drugs remains a major effort. In this paper, we investigate the hypothesis that a combination of FDA-approved drugs may be considered as a candidate for COVID-19 treatment if (1) there exists an evidence in the COVID-19 biomedical literature that suggests such a combination, and (2) there is match in the clinical trials space that validates this drug combination. METHODS We present a computational framework that is designed for detecting drug combinations, using the following components (a) a Text-mining module: to extract drug names from the abstract section of the biomedical publications and the intervention/treatment sections of clinical trial records. (b) a network model constructed from the drug names and their associations, (c) a clique similarity algorithm to identify candidate drug treatments. RESULT AND CONCLUSIONS Our framework has identified treatments in the form of two, three, or four drug combinations (e.g., hydroxychloroquine, doxycycline, and azithromycin). The identifications of the various treatment candidates provided sufficient evidence that supports the trustworthiness of our hypothesis.
Collapse
Affiliation(s)
- Ahmed Abdeen Hamed
- School of Cybersecurity, Data Science and Computing, Norwich University, Northfield, VT 05663, USA
- Sano Centre for Computational Medicine, 30-072 Kraków, Poland;
| | - Tamer E. Fandy
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, USA;
| | | | - Karin Verspoor
- School of Computing Technologies, RMIT University, Melbourne 3001, Australia;
- School of Computing and Information Systems, The University of Melbourne, Melbourne 3010, Australia
| | - Byung Suk Lee
- Department of Computer Science, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
3
|
Jeon J, Kang S, Kim HU. Predicting biochemical and physiological effects of natural products from molecular structures using machine learning. Nat Prod Rep 2021; 38:1954-1966. [PMID: 34047331 DOI: 10.1039/d1np00016k] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2016 to 2021Discovery of novel natural products has been greatly facilitated by advances in genome sequencing, genome mining and analytical techniques. As a result, the volume of data for natural products has increased over the years, which started to serve as ingredients for developing machine learning models. In the past few years, a number of machine learning models have been developed to examine various aspects of a molecule by effectively processing its molecular structure. Understanding of the biological effects of natural products can benefit from such machine learning approaches. In this context, this Highlight reviews recent studies on machine learning models developed to infer various biological effects of molecules. A particular attention is paid to molecular featurization, or computational representation of a molecular structure, which is an essential process during the development of a machine learning model. Technical challenges associated with the use of machine learning for natural products are further discussed.
Collapse
Affiliation(s)
- Junhyeok Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Seongmo Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, Republic of Korea and BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Falvo P, Orecchioni S, Roma S, Raveane A, Bertolini F. Drug Repurposing in Oncology, an Attractive Opportunity for Novel Combinatorial Regimens. Curr Med Chem 2021; 28:2114-2136. [PMID: 33109033 DOI: 10.2174/0929867327999200817104912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 11/22/2022]
Abstract
The costs of developing, validating and buying new drugs are dramatically increasing. On the other hand, sobering economies have difficulties in sustaining their healthcare systems, particularly in countries with an elderly population requiring increasing welfare. This conundrum requires immediate action, and a possible option is to study the large, already present arsenal of drugs approved and to use them for innovative therapies. This possibility is particularly interesting in oncology, where the complexity of the cancer genome dictates in most patients a multistep therapeutic approach. In this review, we discuss a) Computational approaches; b) preclinical models; c) currently ongoing or already published clinical trials in the drug repurposing field in oncology; and d) drug repurposing to overcome resistance to previous therapies.
Collapse
Affiliation(s)
- Paolo Falvo
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Stefania Roma
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy
| |
Collapse
|
5
|
Al-Taie Z, Liu D, Mitchem JB, Papageorgiou C, Kaifi JT, Warren WC, Shyu CR. Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential. J Biomed Inform 2021; 118:103792. [PMID: 33915273 DOI: 10.1016/j.jbi.2021.103792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Enabling precision medicine requires developing robust patient stratification methods as well as drugs tailored to homogeneous subgroups of patients from a heterogeneous population. Developing de novo drugs is expensive and time consuming with an ultimately low FDA approval rate. These limitations make developing new drugs for a small portion of a disease population unfeasible. Therefore, drug repositioning is an essential alternative for developing new drugs for a disease subpopulation. This shows the importance of developing data-driven approaches that find druggable homogeneous subgroups within the disease population and reposition the drugs for these subgroups. In this study, we developed an explainable AI approach for patient stratification and drug repositioning. Contrast pattern mining and network analysis were used to discover homogeneous subgroups within a disease population. For each subgroup, a biomedical network analysis was done to find the drugs that are most relevant to a given subgroup of patients. The set of candidate drugs for each subgroup was ranked using an aggregated drug score assigned to each drug. The proposed method represents a human-in-the-loop framework, where medical experts use the data-driven results to generate hypotheses and obtain insights into potential therapeutic candidates for patients who belong to a subgroup. Colorectal cancer (CRC) was used as a case study. Patients' phenotypic and genotypic data was utilized with a heterogeneous knowledge base because it gives a multi-view perspective for finding new indications for drugs outside of their original use. Our analysis of the top candidate drugs for the subgroups identified by medical experts showed that most of these drugs are cancer-related, and most of them have the potential to be a CRC regimen based on studies in the literature.
Collapse
Affiliation(s)
- Zainab Al-Taie
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Danlu Liu
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA
| | - Jonathan B Mitchem
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | - Christos Papageorgiou
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jussuf T Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Wesley C Warren
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Chi-Ren Shyu
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA; Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
6
|
Kim H, Kim E, Lee I, Bae B, Park M, Nam H. Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches. BIOTECHNOL BIOPROC E 2021; 25:895-930. [PMID: 33437151 PMCID: PMC7790479 DOI: 10.1007/s12257-020-0049-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
As expenditure on drug development increases exponentially, the overall drug discovery process requires a sustainable revolution. Since artificial intelligence (AI) is leading the fourth industrial revolution, AI can be considered as a viable solution for unstable drug research and development. Generally, AI is applied to fields with sufficient data such as computer vision and natural language processing, but there are many efforts to revolutionize the existing drug discovery process by applying AI. This review provides a comprehensive, organized summary of the recent research trends in AI-guided drug discovery process including target identification, hit identification, ADMET prediction, lead optimization, and drug repositioning. The main data sources in each field are also summarized in this review. In addition, an in-depth analysis of the remaining challenges and limitations will be provided, and proposals for promising future directions in each of the aforementioned areas.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Eunyoung Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Ingoo Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Bongsung Bae
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Minsu Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| |
Collapse
|
7
|
Yang J, Zhang D, Liu L, Li G, Cai Y, Zhang Y, Jin H, Chen X. Computational drug repositioning based on the relationships between substructure-indication. Brief Bioinform 2020; 22:6032618. [PMID: 33313675 DOI: 10.1093/bib/bbaa348] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
At present, computational methods for drug repositioning are mainly based on the whole structures of drugs, which limits the discovery of new functions due to the similarities between local structures of drugs. In this article, we, for the first time, integrated the features of chemical-genomics (substructure-domain) and pharmaco-genomics (domain-indication) based on the assumption that drug-target interactions are mediated by the substructures of drugs and the domains of proteins to identify the relationships between substructure-indication and establish a drug-substructure-indication network for predicting all therapeutic effects of tested drugs through only information on the substructures of drugs. In total, 83 205 drug-indication relationships with different correlation scores were obtained. We used three different verification methods to indicate the accuracy of the method and the reliability of the scoring system. We predicted all indications of olaparib using our method, including the known antitumor effect and unknown antiviral effect verified by literature, and we also discovered the inhibitory mechanism of olaparib toward DNA repair through its specific sub494 (o = C-C: C), as it participates in the low synthesis of the poly subfunction of the apoptosis pathway (hsa04210) by inhibiting the Inositol 1,4,5-trisphosphate receptor(s) (ITPRs) and hydrolyzing poly (ADP ribose) polymerases. ElectroCardioGrams of four drugs (quinidine, amiodarone, milrinone and fosinopril) demonstrated the effect of anti-arrhythmia. Unlike previous studies focusing on the overall structures of drugs, our research has great potential in the search for more therapeutic effects of drugs and in predicting all potential effects and mechanisms of a drug from the local structural similarity.
Collapse
Affiliation(s)
- Jingbo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Denan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Lei Liu
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Guoqi Li
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Yiyang Cai
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University
| | - Hongbo Jin
- Department of Physiology, Harbin Medical University
| | - Xiujie Chen
- College of Bioinformatics Science and Technology, Harbin Medical University
| |
Collapse
|
8
|
Ezugwu AE, Shukla AK, Agbaje MB, Oyelade ON, José-García A, Agushaka JO. Automatic clustering algorithms: a systematic review and bibliometric analysis of relevant literature. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05395-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Chel S, Gare S, Giri L. Detection of Specific Templates in Calcium Spiking in HeLa Cells Using Hierarchical DBSCAN: Clustering and Visualization of CellDrug Interaction at Multiple Doses. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:2425-2428. [PMID: 33018496 DOI: 10.1109/embc44109.2020.9175925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One of the major challenges in analyzing large scale intracellular calcium spiking data obtained through fluorescent imaging is to identify various patterns present in time series data. Such an analysis identifying the distinct frequency and amplitude encoding during cell-drug interaction study is expected to provide new insights into the drug action patterns over a time course. Here, we present the HDBSCAN clustering algorithm to find a clustering pattern present in calcium spiking obtained by confocal imaging of single cells. Our methodology uncovers the specific templates present in dynamic responses obtained through treatment with multiple doses of the drug. First, we attempt to visualize the clustering pattern present in time-series data corresponding to various doses of the drug. Secondly, we show that the HDBSCAN can be used for the detection of specific signatures corresponding to low and high cell density regions selected from in vitro experiments. To the best of our knowledge, this is the first attempt to optimize the clustering of calcium dynamics using HDBSCAN. Finally, we emphasize that HDBSCAN offers a high-level grasp on systems biology data, including complex spiking pattern and can be used as a visual analytic tool for drug dose selection.
Collapse
|
10
|
Chan J, Wang X, Turner JA, Baldwin NE, Gu J. Breaking the paradigm: Dr Insight empowers signature-free, enhanced drug repurposing. Bioinformatics 2020; 35:2818-2826. [PMID: 30624606 PMCID: PMC6691331 DOI: 10.1093/bioinformatics/btz006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/13/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Motivation Transcriptome-based computational drug repurposing has attracted considerable interest by bringing about faster and more cost-effective drug discovery. Nevertheless, key limitations of the current drug connectivity-mapping paradigm have been long overlooked, including the lack of effective means to determine optimal query gene signatures. Results The novel approach Dr Insight implements a frame-breaking statistical model for the ‘hand-shake’ between disease and drug data. The genome-wide screening of concordantly expressed genes (CEGs) eliminates the need for subjective selection of query signatures, added to eliciting better proxy for potential disease-specific drug targets. Extensive comparisons on simulated and real cancer datasets have validated the superior performance of Dr Insight over several popular drug-repurposing methods to detect known cancer drugs and drug–target interactions. A proof-of-concept trial using the TCGA breast cancer dataset demonstrates the application of Dr Insight for a comprehensive analysis, from redirection of drug therapies, to a systematic construction of disease-specific drug-target networks. Availability and implementation Dr Insight R package is available at https://cran.r-project.org/web/packages/DrInsight/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinyan Chan
- Baylor Scott & White Research Institute, Dallas, TX, USA.,Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Xuan Wang
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Jacob A Turner
- Department of Mathematics and Statistics, Stephen F. Austin State University, Nacogdoches, TX, USA
| | | | - Jinghua Gu
- Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|