1
|
Mildau K, Ehlers H, Meisenburg M, Del Pup E, Koetsier RA, Torres Ortega LR, de Jonge NF, Singh KS, Ferreira D, Othibeng K, Tugizimana F, Huber F, van der Hooft JJJ. Effective data visualization strategies in untargeted metabolomics. Nat Prod Rep 2024. [PMID: 39620439 PMCID: PMC11610048 DOI: 10.1039/d4np00039k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 12/11/2024]
Abstract
Covering: 2014 to 2023 for metabolomics, 2002 to 2023 for information visualizationLC-MS/MS-based untargeted metabolomics is a rapidly developing research field spawning increasing numbers of computational metabolomics tools assisting researchers with their complex data processing, analysis, and interpretation tasks. In this article, we review the entire untargeted metabolomics workflow from the perspective of information visualization, visual analytics and visual data integration. Data visualization is a crucial step at every stage of the metabolomics workflow, where it provides core components of data inspection, evaluation, and sharing capabilities. However, due to the large number of available data analysis tools and corresponding visualization components, it is hard for both users and developers to get an overview of what is already available and which tools are suitable for their analysis. In addition, there is little cross-pollination between the fields of data visualization and metabolomics, leaving visual tools to be designed in a secondary and mostly ad hoc fashion. With this review, we aim to bridge the gap between the fields of untargeted metabolomics and data visualization. First, we introduce data visualization to the untargeted metabolomics field as a topic worthy of its own dedicated research, and provide a primer on cutting-edge visualization research into data visualization for both researchers as well as developers active in metabolomics. We extend this primer with a discussion of best practices for data visualization as they have emerged from data visualization studies. Second, we provide a practical roadmap to the visual tool landscape and its use within the untargeted metabolomics field. Here, for several computational analysis stages within the untargeted metabolomics workflow, we provide an overview of commonly used visual strategies with practical examples. In this context, we will also outline promising areas for further research and development. We end the review with a set of recommendations for developers and users on how to make the best use of visualizations for more effective and transparent communication of results.
Collapse
Affiliation(s)
- Kevin Mildau
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Henry Ehlers
- Visualization Group, Institute of Visual Computing and Human-Centered Technology, TU Wien, Vienna, Austria.
| | - Mara Meisenburg
- Adaptation Physiology Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Elena Del Pup
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Robert A Koetsier
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | | | - Niek F de Jonge
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Kumar Saurabh Singh
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
- Maastricht University Faculty of Science and Engineering, Plant Functional Genomics Maastricht, Limburg, The Netherlands
- Faculty of Environment, Science and Economy, University of Exeter, Penryl Cornwall, UK
| | | | - Kgalaletso Othibeng
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Florian Huber
- Centre for Digitalisation and Digitality, Düsseldorf University of Applied Sciences, Düsseldorf, Germany
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, Wageningen, The Netherlands.
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
2
|
Aichem M, Klein K, Czauderna T, Garkov D, Zhao J, Li J, Schreiber F. Towards a hybrid user interface for the visual exploration of large biomolecular networks using virtual reality. J Integr Bioinform 2022; 19:jib-2022-0034. [PMID: 36215728 PMCID: PMC9800044 DOI: 10.1515/jib-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
Biomolecular networks, including genome-scale metabolic models (GSMMs), assemble the knowledge regarding the biological processes that happen inside specific organisms in a way that allows for analysis, simulation, and exploration. With the increasing availability of genome annotations and the development of powerful reconstruction tools, biomolecular networks continue to grow ever larger. While visual exploration can facilitate the understanding of such networks, the network sizes represent a major challenge for current visualisation systems. Building on promising results from the area of immersive analytics, which among others deals with the potential of immersive visualisation for data analysis, we present a concept for a hybrid user interface that combines a classical desktop environment with a virtual reality environment for the visual exploration of large biomolecular networks and corresponding data. We present system requirements and design considerations, describe a resulting concept, an envisioned technical realisation, and a systems biology usage scenario. Finally, we discuss remaining challenges.
Collapse
Affiliation(s)
- Michael Aichem
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Karsten Klein
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Tobias Czauderna
- Faculty of Applied Computer Sciences & Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Dimitar Garkov
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
| | - Jinxin Zhao
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Falk Schreiber
- Department of Computer and Information Science, University of Konstanz, Konstanz, Germany
- Faculty of Information Technology, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Wu HY, Nollenburg M, Viola I. Multi-Level Area Balancing of Clustered Graphs. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2022; 28:2682-2696. [PMID: 33201819 DOI: 10.1109/tvcg.2020.3038154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present a multi-level area balancing technique for laying out clustered graphs to facilitate a comprehensive understanding of the complex relationships that exist in various fields, such as life sciences and sociology. Clustered graphs are often used to model relationships that are accompanied by attribute-based grouping information. Such information is essential for robust data analysis, such as for the study of biological taxonomies or educational backgrounds. Hence, the ability to smartly arrange textual labels and packing graphs within a certain screen space is therefore desired to successfully convey the attribute data . Here we propose to hierarchically partition the input screen space using Voronoi tessellations in multiple levels of detail. In our method, the position of textual labels is guided by the blending of constrained forces and the forces derived from centroidal Voronoi cells. The proposed algorithm considers three main factors: (1) area balancing, (2) schematized space partitioning, and (3) hairball management. We primarily focus on area balancing, which aims to allocate a uniform area for each textual label in the diagram. We achieve this by first untangling a general graph to a clustered graph through textual label duplication, and then coupling with spanning-tree-like visual integration. We illustrate the feasibility of our approach with examples and then evaluate our method by comparing it with well-known conventional approaches and collecting feedback from domain experts.
Collapse
|
4
|
O'Shea K, Misra BB. Software tools, databases and resources in metabolomics: updates from 2018 to 2019. Metabolomics 2020; 16:36. [PMID: 32146531 DOI: 10.1007/s11306-020-01657-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/01/2020] [Indexed: 12/24/2022]
Abstract
Metabolomics has evolved as a discipline from a discovery and functional genomics tool, and is now a cornerstone in the era of big data-driven precision medicine. Sample preparation strategies and analytical technologies have seen enormous growth, and keeping pace with data analytics is challenging, to say the least. This review introduces and briefly presents around 100 metabolomics software resources, tools, databases, and other utilities that have surfaced or have improved in 2019. Table 1 provides the computational dependencies of the tools, categorizes the resources based on utility and ease of use, and provides hyperlinks to webpages where the tools can be downloaded or used. This review intends to keep the community of metabolomics researchers up to date with all the software tools, resources, and databases developed in 2019, in one place.
Collapse
Affiliation(s)
- Keiron O'Shea
- Institute of Biological, Environmental, and Rural Studies, Aberystwyth University, Ceredigion, Wales, SY23 3DA, UK
| | - Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|