Chantzi E, Hammerling U, Gustafsson MG. Exhaustive in vitro evaluation of the 9-drug cocktail CUSP9 for treatment of glioblastoma.
Comput Biol Med 2024;
178:108748. [PMID:
38925084 DOI:
10.1016/j.compbiomed.2024.108748]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/23/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
The CUSP9 protocol is a polypharmaceutical strategy aiming at addressing the complexity of glioblastoma by targeting multiple pathways. Although the rationale for this 9-drug cocktail is well-supported by theoretical and in vitro data, its effectiveness compared to its 511 possible subsets has not been comprehensively evaluated. Such an analysis could reveal if fewer drugs could achieve similar or better outcomes. We conducted an exhaustive in vitro evaluation of the CUSP9 protocol using COMBImageDL, our specialized framework for testing higher-order drug combinations. This study assessed all 511 subsets of the CUSP9v3 protocol, in combination with temozolomide, on two clonal cultures of glioma-initiating cells derived from patient samples. The drugs were used at fixed, clinically relevant concentrations, and the experiment was performed in quadruplicate with endpoint cell viability and live-cell imaging readouts. Our results showed that several lower-order drug combinations produced effects equivalent to the full CUSP9 cocktail, indicating potential for simplified regimens in personalized therapy. Further validation through in vivo and precision medicine testing is required. Notably, a subset of four drugs (auranofin, disulfiram, itraconazole, sertraline) was particularly effective, reducing cell growth, altering cell morphology, increasing apoptotic-like cells within 4-28 h, and significantly decreasing cell viability after 68 h compared to untreated cells. This study underscores the importance and feasibility of comprehensive in vitro evaluations of complex drug combinations on patient-derived tumor cells, serving as a critical step toward (pre-)clinical development.
Collapse