1
|
Farias JG, Herrera-Belén L, Jimenez L, Beltrán JF. PROTA: A Robust Tool for Protamine Prediction Using a Hybrid Approach of Machine Learning and Deep Learning. Int J Mol Sci 2024; 25:10267. [PMID: 39408595 PMCID: PMC11476296 DOI: 10.3390/ijms251910267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Protamines play a critical role in DNA compaction and stabilization in sperm cells, significantly influencing male fertility and various biotechnological applications. Traditionally, identifying these proteins is a challenging and time-consuming process due to their species-specific variability and complexity. Leveraging advancements in computational biology, we present PROTA, a novel tool that combines machine learning (ML) and deep learning (DL) techniques to predict protamines with high accuracy. For the first time, we integrate Generative Adversarial Networks (GANs) with supervised learning methods to enhance the accuracy and generalizability of protamine prediction. Our methodology evaluated multiple ML models, including Light Gradient-Boosting Machine (LIGHTGBM), Multilayer Perceptron (MLP), Random Forest (RF), eXtreme Gradient Boosting (XGBOOST), k-Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), and Radial Basis Function-Support Vector Machine (RBF-SVM). During ten-fold cross-validation on our training dataset, the MLP model with GAN-augmented data demonstrated superior performance metrics: 0.997 accuracy, 0.997 F1 score, 0.998 precision, 0.997 sensitivity, and 1.0 AUC. In the independent testing phase, this model achieved 0.999 accuracy, 0.999 F1 score, 1.0 precision, 0.999 sensitivity, and 1.0 AUC. These results establish PROTA, accessible via a user-friendly web application. We anticipate that PROTA will be a crucial resource for researchers, enabling the rapid and reliable prediction of protamines, thereby advancing our understanding of their roles in reproductive biology, biotechnology, and medicine.
Collapse
Affiliation(s)
- Jorge G. Farias
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| | - Lisandra Herrera-Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile;
| | - Luis Jimenez
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Ave. Francisco Salazar 01145, Temuco 4811230, Chile; (J.G.F.); (L.J.)
| |
Collapse
|
2
|
Su YY, Liu YL, Huang HC, Lin CC. Ensemble learning model for identifying the hallmark genes of NFκB/TNF signaling pathway in cancers. J Transl Med 2023; 21:485. [PMID: 37475016 PMCID: PMC10357720 DOI: 10.1186/s12967-023-04355-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The nuclear factor kappa B (NFκB) regulatory pathways downstream of tumor necrosis factor (TNF) play a critical role in carcinogenesis. However, the widespread influence of NFκB in cells can result in off-target effects, making it a challenging therapeutic target. Ensemble learning is a machine learning technique where multiple models are combined to improve the performance and robustness of the prediction. Accordingly, an ensemble learning model could uncover more precise targets within the NFκB/TNF signaling pathway for cancer therapy. METHODS In this study, we trained an ensemble learning model on the transcriptome profiles from 16 cancer types in the TCGA database to identify a robust set of genes that are consistently associated with the NFκB/TNF pathway in cancer. Our model uses cancer patients as features to predict the genes involved in the NFκB/TNF signaling pathway and can be adapted to predict the genes for different cancer types by switching the cancer type of patients. We also performed functional analysis, survival analysis, and a case study of triple-negative breast cancer to demonstrate our model's potential in translational cancer medicine. RESULTS Our model accurately identified genes regulated by NFκB in response to TNF in cancer patients. The downstream analysis showed that the identified genes are typically involved in the canonical NFκB-regulated pathways, particularly in adaptive immunity, anti-apoptosis, and cellular response to cytokine stimuli. These genes were found to have oncogenic properties and detrimental effects on patient survival. Our model also could distinguish patients with a specific cancer subtype, triple-negative breast cancer (TNBC), which is known to be influenced by NFκB-regulated pathways downstream of TNF. Furthermore, a functional module known as mononuclear cell differentiation was identified that accurately predicts TNBC patients and poor short-term survival in non-TNBC patients, providing a potential avenue for developing precision medicine for cancer subtypes. CONCLUSIONS In conclusion, our approach enables the discovery of genes in NFκB-regulated pathways in response to TNF and their relevance to carcinogenesis. We successfully categorized these genes into functional groups, providing valuable insights for discovering more precise and targeted cancer therapeutics.
Collapse
Affiliation(s)
- Yin-Yuan Su
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Ling Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Ching Lin
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
3
|
Zheng Y, Young ND, Song J, Chang BC, Gasser RB. An informatic workflow for the enhanced annotation of excretory/secretory proteins of Haemonchus contortus. Comput Struct Biotechnol J 2023; 21:2696-2704. [PMID: 37143762 PMCID: PMC10151223 DOI: 10.1016/j.csbj.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Major advances in genomic and associated technologies have demanded reliable bioinformatic tools and workflows for the annotation of genes and their products via comparative analyses using well-curated reference data sets, accessible in public repositories. However, the accurate in silico annotation of molecules (proteins) encoded in organisms (e.g., multicellular parasites) which are evolutionarily distant from those for which these extensive reference data sets are available, including invertebrate model organisms (e.g., Caenorhabditis elegans - free-living nematode, and Drosophila melanogaster - the vinegar fly) and vertebrate species (e.g., Homo sapiens and Mus musculus), remains a major challenge. Here, we constructed an informatic workflow for the enhanced annotation of biologically-important, excretory/secretory (ES) proteins ("secretome") encoded in the genome of a parasitic roundworm, called Haemonchus contortus (commonly known as the barber's pole worm). We critically evaluated the performance of five distinct methods, refined some of them, and then combined the use of all five methods to comprehensively annotate ES proteins, according to gene ontology, biological pathways and/or metabolic (enzymatic) processes. Then, using optimised parameter settings, we applied this workflow to comprehensively annotate 2591 of all 3353 proteins (77.3%) in the secretome of H. contortus. This result is a substantial improvement (10-25%) over previous annotations using individual, "off-the-shelf" algorithms and default settings, indicating the ready applicability of the present, refined workflow to gene/protein sequence data sets from a wide range of organisms in the Tree-of-Life.
Collapse
|
4
|
Romero M, Nakano FK, Finke J, Rocha C, Vens C. Leveraging class hierarchy for detecting missing annotations on hierarchical multi-label classification. Comput Biol Med 2023; 152:106423. [PMID: 36529023 DOI: 10.1016/j.compbiomed.2022.106423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
With the development of new sequencing technologies, availability of genomic data has grown exponentially. Over the past decade, numerous studies have used genomic data to identify associations between genes and biological functions. While these studies have shown success in annotating genes with functions, they often assume that genes are completely annotated and fail to take into account that datasets are sparse and noisy. This work proposes a method to detect missing annotations in the context of hierarchical multi-label classification. More precisely, our method exploits the relations of functions, represented as a hierarchy, by computing probabilities based on the paths of functions in the hierarchy. By performing several experiments on a variety of rice (Oriza sativa Japonica), we showcase that the proposed method accurately detects missing annotations and yields superior results when compared to state-of-art methods from the literature.
Collapse
Affiliation(s)
- Miguel Romero
- Department of Electronics and Computer Science, Pontificia Universidad Javeriana, Calle 18 N 118-250, Cali, 760031, Colombia.
| | - Felipe Kenji Nakano
- Department of Public Health and Primary Care, KU Leuven Campus KULAK, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium; Itec, imec research group at KU Leuven, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium.
| | - Jorge Finke
- Department of Electronics and Computer Science, Pontificia Universidad Javeriana, Calle 18 N 118-250, Cali, 760031, Colombia.
| | - Camilo Rocha
- Department of Electronics and Computer Science, Pontificia Universidad Javeriana, Calle 18 N 118-250, Cali, 760031, Colombia.
| | - Celine Vens
- Department of Public Health and Primary Care, KU Leuven Campus KULAK, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium; Itec, imec research group at KU Leuven, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium.
| |
Collapse
|
5
|
Xia W, Zheng L, Fang J, Li F, Zhou Y, Zeng Z, Zhang B, Li Z, Li H, Zhu F. PFmulDL: a novel strategy enabling multi-class and multi-label protein function annotation by integrating diverse deep learning methods. Comput Biol Med 2022; 145:105465. [PMID: 35366467 DOI: 10.1016/j.compbiomed.2022.105465] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Bioinformatic annotation of protein function is essential but extremely sophisticated, which asks for extensive efforts to develop effective prediction method. However, the existing methods tend to amplify the representativeness of the families with large number of proteins by misclassifying the proteins in the families with small number of proteins. That is to say, the ability of the existing methods to annotate proteins in the 'rare classes' remains limited. Herein, a new protein function annotation strategy, PFmulDL, integrating multiple deep learning methods, was thus constructed. First, the recurrent neural network was integrated, for the first time, with the convolutional neural network to facilitate the function annotation. Second, a transfer learning method was introduced to the model construction for further improving the prediction performances. Third, based on the latest data of Gene Ontology, the newly constructed model could annotate the largest number of protein families comparing with the existing methods. Finally, this newly constructed model was found capable of significantly elevating the prediction performance for the 'rare classes' without sacrificing that for the 'major classes'. All in all, due to the emerging requirements on improving the prediction performance for the proteins in 'rare classes', this new strategy would become an essential complement to the existing methods for protein function prediction. All the models and source codes are freely available and open to all users at: https://github.com/idrblab/PFmulDL.
Collapse
Affiliation(s)
- Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Jiebin Fang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Fengcheng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Honglin Li
- School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
6
|
Filho JAF, Rosolen RR, Almeida DA, de Azevedo PHC, Motta MLL, Aono AH, dos Santos CA, Horta MAC, de Souza AP. Trends in biological data integration for the selection of enzymes and transcription factors related to cellulose and hemicellulose degradation in fungi. 3 Biotech 2021; 11:475. [PMID: 34777932 PMCID: PMC8548487 DOI: 10.1007/s13205-021-03032-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022] Open
Abstract
Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of information can be generated at the genomic, structural and functional levels, including the gene expression profiles and regulatory mechanisms of these organisms, during degradation-induced conditions. This increase in data generation made rapid computational development necessary to deal with the large amounts of data generated. In this context, the origination of bioinformatics, a hybrid science integrating biological data with various techniques for information storage, distribution and analysis, was a fundamental step toward the current state-of-the-art in the postgenomic era. The possibility of integrating biological big data has facilitated exciting discoveries, including identifying novel mechanisms and more efficient enzymes, increasing yields, reducing costs and expanding opportunities in the bioprocess field. In this review, we summarize the current status and trends of the integration of different types of biological data through bioinformatics approaches for biological data analysis and enzyme selection.
Collapse
Affiliation(s)
- Jaire A. Ferreira Filho
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Rafaela R. Rosolen
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Deborah A. Almeida
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Paulo Henrique C. de Azevedo
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Maria Lorenza L. Motta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Alexandre H. Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
| | - Clelton A. dos Santos
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Maria Augusta C. Horta
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, SP Brazil
- Department of Plant Biology, Institute of Biology, UNICAMP, Universidade Estadual de Campinas, Campinas, SP 13083-875 Brazil
| |
Collapse
|
7
|
Tao J, Brayton KA, Broschat SL. PASS: Protein Annotation Surveillance Site for Protein Annotation Using Homologous Clusters, NLP, and Sequence Similarity Networks. FRONTIERS IN BIOINFORMATICS 2021; 1:749008. [PMID: 36303767 PMCID: PMC9581018 DOI: 10.3389/fbinf.2021.749008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Advances in genome sequencing have accelerated the growth of sequenced genomes but at a cost in the quality of genome annotation. At the same time, computational analysis is widely used for protein annotation, but a dearth of experimental verification has contributed to inaccurate annotation as well as to annotation error propagation. Thus, a tool to help life scientists with accurate protein annotation would be useful. In this work we describe a website we have developed, the Protein Annotation Surveillance Site (PASS), which provides such a tool. This website consists of three major components: a database of homologous clusters of more than eight million protein sequences deduced from the representative genomes of bacteria, archaea, eukarya, and viruses, together with sequence information; a machine-learning software tool which periodically queries the UniprotKB database to determine whether protein function has been experimentally verified; and a query-able webpage where the FASTA headers of sequences from the cluster best matching an input sequence are returned. The user can choose from these sequences to create a sequence similarity network to assist in annotation or else use their expert knowledge to choose an annotation from the cluster sequences. Illustrations demonstrating use of this website are presented.
Collapse
Affiliation(s)
- Jin Tao
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
| | - Kelly A. Brayton
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| | - Shira L. Broschat
- School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, United States
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States
| |
Collapse
|
8
|
Handling imbalance in hierarchical classification problems using local classifiers approaches. Data Min Knowl Discov 2021. [DOI: 10.1007/s10618-021-00762-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Helmy M, Smith D, Selvarajoo K. Systems biology approaches integrated with artificial intelligence for optimized metabolic engineering. Metab Eng Commun 2020; 11:e00149. [PMID: 33072513 PMCID: PMC7546651 DOI: 10.1016/j.mec.2020.e00149] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 12/05/2022] Open
Abstract
Metabolic engineering aims to maximize the production of bio-economically important substances (compounds, enzymes, or other proteins) through the optimization of the genetics, cellular processes and growth conditions of microorganisms. This requires detailed understanding of underlying metabolic pathways involved in the production of the targeted substances, and how the cellular processes or growth conditions are regulated by the engineering. To achieve this goal, a large system of experimental techniques, compound libraries, computational methods and data resources, including multi-omics data, are used. The recent advent of multi-omics systems biology approaches significantly impacted the field by opening new avenues to perform dynamic and large-scale analyses that deepen our knowledge on the manipulations. However, with the enormous transcriptomics, proteomics and metabolomics available, it is a daunting task to integrate the data for a more holistic understanding. Novel data mining and analytics approaches, including Artificial Intelligence (AI), can provide breakthroughs where traditional low-throughput experiment-alone methods cannot easily achieve. Here, we review the latest attempts of combining systems biology and AI in metabolic engineering research, and highlight how this alliance can help overcome the current challenges facing industrial biotechnology, especially for food-related substances and compounds using microorganisms.
Collapse
Affiliation(s)
- Mohamed Helmy
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Derek Smith
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Kumar Selvarajoo
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore (NUS), Singapore, Singapore
| |
Collapse
|
10
|
Ejigu GF, Jung J. Review on the Computational Genome Annotation of Sequences Obtained by Next-Generation Sequencing. BIOLOGY 2020; 9:E295. [PMID: 32962098 PMCID: PMC7565776 DOI: 10.3390/biology9090295] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022]
Abstract
Next-Generation Sequencing (NGS) has made it easier to obtain genome-wide sequence data and it has shifted the research focus into genome annotation. The challenging tasks involved in annotation rely on the currently available tools and techniques to decode the information contained in nucleotide sequences. This information will improve our understanding of general aspects of life and evolution and improve our ability to diagnose genetic disorders. Here, we present a summary of both structural and functional annotations, as well as the associated comparative annotation tools and pipelines. We highlight visualization tools that immensely aid the annotation process and the contributions of the scientific community to the annotation. Further, we discuss quality-control practices and the need for re-annotation, and highlight the future of annotation.
Collapse
Affiliation(s)
| | - Jaehee Jung
- Department of Information and Communication Engineering, Myongji University, Yongin-si 17058, Gyeonggi-do, Korea;
| |
Collapse
|
11
|
|
12
|
Hui DS, Lee R. Commentary: Novel but nascent. J Thorac Cardiovasc Surg 2020; 162:864-865. [PMID: 32359900 DOI: 10.1016/j.jtcvs.2020.03.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Dawn S Hui
- Department of Cardiothoracic Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Tex
| | - Richard Lee
- Division of Cardiothoracic Surgery, Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Ga.
| |
Collapse
|
13
|
Strodthoff N, Wagner P, Wenzel M, Samek W. UDSMProt: universal deep sequence models for protein classification. Bioinformatics 2020; 36:2401-2409. [PMID: 31913448 PMCID: PMC7178389 DOI: 10.1093/bioinformatics/btaa003] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 01/03/2023] Open
Abstract
MOTIVATION Inferring the properties of a protein from its amino acid sequence is one of the key problems in bioinformatics. Most state-of-the-art approaches for protein classification are tailored to single classification tasks and rely on handcrafted features, such as position-specific-scoring matrices from expensive database searches. We argue that this level of performance can be reached or even be surpassed by learning a task-agnostic representation once, using self-supervised language modeling, and transferring it to specific tasks by a simple fine-tuning step. RESULTS We put forward a universal deep sequence model that is pre-trained on unlabeled protein sequences from Swiss-Prot and fine-tuned on protein classification tasks. We apply it to three prototypical tasks, namely enzyme class prediction, gene ontology prediction and remote homology and fold detection. The proposed method performs on par with state-of-the-art algorithms that were tailored to these specific tasks or, for two out of three tasks, even outperforms them. These results stress the possibility of inferring protein properties from the sequence alone and, on more general grounds, the prospects of modern natural language processing methods in omics. Moreover, we illustrate the prospects for explainable machine learning methods in this field by selected case studies. AVAILABILITY AND IMPLEMENTATION Source code is available under https://github.com/nstrodt/UDSMProt. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Nils Strodthoff
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Berlin 10587, Germany
| | - Patrick Wagner
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Berlin 10587, Germany
| | - Markus Wenzel
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Berlin 10587, Germany
| | - Wojciech Samek
- Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Berlin 10587, Germany
| |
Collapse
|