1
|
Lee IC, Tsai YP, Lin YC, Chen TC, Yen CH, Chiu NC, Hwang HE, Liu CA, Huang JG, Lee RC, Chao Y, Ho SY, Huang YH. A hierarchical fusion strategy of deep learning networks for detection and segmentation of hepatocellular carcinoma from computed tomography images. Cancer Imaging 2024; 24:43. [PMID: 38532511 PMCID: PMC10964581 DOI: 10.1186/s40644-024-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Automatic segmentation of hepatocellular carcinoma (HCC) on computed tomography (CT) scans is in urgent need to assist diagnosis and radiomics analysis. The aim of this study is to develop a deep learning based network to detect HCC from dynamic CT images. METHODS Dynamic CT images of 595 patients with HCC were used. Tumors in dynamic CT images were labeled by radiologists. Patients were randomly divided into training, validation and test sets in a ratio of 5:2:3, respectively. We developed a hierarchical fusion strategy of deep learning networks (HFS-Net). Global dice, sensitivity, precision and F1-score were used to measure performance of the HFS-Net model. RESULTS The 2D DenseU-Net using dynamic CT images was more effective for segmenting small tumors, whereas the 2D U-Net using portal venous phase images was more effective for segmenting large tumors. The HFS-Net model performed better, compared with the single-strategy deep learning models in segmenting small and large tumors. In the test set, the HFS-Net model achieved good performance in identifying HCC on dynamic CT images with global dice of 82.8%. The overall sensitivity, precision and F1-score were 84.3%, 75.5% and 79.6% per slice, respectively, and 92.2%, 93.2% and 92.7% per patient, respectively. The sensitivity in tumors < 2 cm, 2-3, 3-5 cm and > 5 cm were 72.7%, 92.9%, 94.2% and 100% per patient, respectively. CONCLUSIONS The HFS-Net model achieved good performance in the detection and segmentation of HCC from dynamic CT images, which may support radiologic diagnosis and facilitate automatic radiomics analysis.
Collapse
Affiliation(s)
- I-Cheng Lee
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Ping Tsai
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yen-Cheng Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Chun Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chia-Heng Yen
- Institute of Computer Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Nai-Chi Chiu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsuen-En Hwang
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chien-An Liu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Guan Huang
- National Taiwan University School of Medicine, Taipei, Taiwan
| | - Rheun-Chuan Lee
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yee Chao
- Cancer Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS 2 B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan.
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Healthcare and Service Center, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Wang J, Peng Y, Jing S, Han L, Li T, Luo J. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+. BMC Cancer 2023; 23:1060. [PMID: 37923988 PMCID: PMC10623778 DOI: 10.1186/s12885-023-11432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/21/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE Radiomic and deep learning studies based on magnetic resonance imaging (MRI) of liver tumor are gradually increasing. Manual segmentation of normal hepatic tissue and tumor exhibits limitations. METHODS 105 patients diagnosed with hepatocellular carcinoma were retrospectively studied between Jan 2015 and Dec 2020. The patients were divided into three sets: training (n = 83), validation (n = 11), and internal testing (n = 11). Additionally, 9 cases were included from the Cancer Imaging Archive as the external test set. Using the arterial phase and T2WI sequences, expert radiologists manually delineated all images. Using deep learning, liver tumors and liver segments were automatically segmented. A preliminary liver segmentation was performed using the UNet + + network, and the segmented liver mask was re-input as the input end into the UNet + + network to segment liver tumors. The false positivity rate was reduced using a threshold value in the liver tumor segmentation. To evaluate the segmentation results, we calculated the Dice similarity coefficient (DSC), average false positivity rate (AFPR), and delineation time. RESULTS The average DSC of the liver in the validation and internal testing sets was 0.91 and 0.92, respectively. In the validation set, manual and automatic delineation took 182.9 and 2.2 s, respectively. On an average, manual and automatic delineation took 169.8 and 1.7 s, respectively. The average DSC of liver tumors was 0.612 and 0.687 in the validation and internal testing sets, respectively. The average time for manual and automatic delineation and AFPR in the internal testing set were 47.4 s, 2.9 s, and 1.4, respectively, and those in the external test set were 29.5 s, 4.2 s, and 1.6, respectively. CONCLUSION UNet + + can automatically segment normal hepatic tissue and liver tumors based on MR images. It provides a methodological basis for the automated segmentation of liver tumors, improves the delineation efficiency, and meets the requirement of extraction set analysis of further radiomics and deep learning.
Collapse
Affiliation(s)
- Jing Wang
- Department of General medicine, The First Medical Center Department of Chinese PLA General Hospital, Peking, 100039, China
| | - Yanyang Peng
- Department of Radiology, First Medical Center of General Hospital of People's Liberation Army, Peking, China
| | - Shi Jing
- Department of Oncology, Huaihe Hospital, Henan University, Kaifeng, 475000, China
| | - Lujun Han
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Cancer for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, China.
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
| | - Junpeng Luo
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|
3
|
Berbís MA, Paulano Godino F, Royuela del Val J, Alcalá Mata L, Luna A. Clinical impact of artificial intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol 2023; 29:1427-1445. [PMID: 36998424 PMCID: PMC10044858 DOI: 10.3748/wjg.v29.i9.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Artificial intelligence (AI) has experienced substantial progress over the last ten years in many fields of application, including healthcare. In hepatology and pancreatology, major attention to date has been paid to its application to the assisted or even automated interpretation of radiological images, where AI can generate accurate and reproducible imaging diagnosis, reducing the physicians’ workload. AI can provide automatic or semi-automatic segmentation and registration of the liver and pancreatic glands and lesions. Furthermore, using radiomics, AI can introduce new quantitative information which is not visible to the human eye to radiological reports. AI has been applied in the detection and characterization of focal lesions and diffuse diseases of the liver and pancreas, such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, among others. These solutions have been applied to different imaging techniques commonly used to diagnose liver and pancreatic diseases, such as ultrasound, endoscopic ultrasonography, computerized tomography (CT), magnetic resonance imaging, and positron emission tomography/CT. However, AI is also applied in this context to many other relevant steps involved in a comprehensive clinical scenario to manage a gastroenterological patient. AI can also be applied to choose the most convenient test prescription, to improve image quality or accelerate its acquisition, and to predict patient prognosis and treatment response. In this review, we summarize the current evidence on the application of AI to hepatic and pancreatic radiology, not only in regard to the interpretation of images, but also to all the steps involved in the radiological workflow in a broader sense. Lastly, we discuss the challenges and future directions of the clinical application of AI methods.
Collapse
Affiliation(s)
- M Alvaro Berbís
- Department of Radiology, HT Médica, San Juan de Dios Hospital, Córdoba 14960, Spain
- Faculty of Medicine, Autonomous University of Madrid, Madrid 28049, Spain
| | | | | | - Lidia Alcalá Mata
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| | - Antonio Luna
- Department of Radiology, HT Médica, Clínica las Nieves, Jaén 23007, Spain
| |
Collapse
|
4
|
Buttongkum D, Tangpornprasert P, Virulsri C, Numkarunarunrote N, Amarase C, Kobchaisawat T, Chalidabhongse T. 3D reconstruction of proximal femoral fracture from biplanar radiographs with fractural representative learning. Sci Rep 2023; 13:455. [PMID: 36624184 PMCID: PMC9829664 DOI: 10.1038/s41598-023-27607-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
A femoral fracture is a severe injury occurring in traumatic and pathologic causes. Diagnosis and Preoperative planning are indispensable procedures relying on preoperative radiographs such as X-ray and CT images. Nevertheless, CT imaging has a higher cost, radiation dose, and longer acquisition time than X-ray imaging. Thus, the fracture 3D reconstruction from X-ray images had been needed and remains a challenging problem, as well as a lack of dataset. This paper proposes a 3D proximal femoral fracture reconstruction from biplanar radiographs to improve the 3D visualization of bone fragments during preoperative planning. A novel Fracture Reconstruction Network (FracReconNet) is proposed to retrieve the femoral bone shape with fracture details, including the 3D Reconstruction Network (3DReconNet), novel Auxiliary class (AC), and Fractural augmentation (FA). The 3D reconstruction network applies a deep learning-based, fully Convolutional Network with Feature Pyramid Network architecture. Specifically, the auxiliary class is proposed, which refers to fracture representation. It encourages network learning to reconstruct the fracture. Since the samples are scarce to acquire, the fractural augmentation is invented to enlarge the fracture training samples and improve reconstruction accuracy. The evaluation of FracReconNet achieved a mIoU of 0.851 and mASSD of 0.906 mm. The proposed FracReconNet's results show fracture detail similar to the real fracture, while the 3DReconNet cannot offer.
Collapse
Affiliation(s)
- Danupong Buttongkum
- grid.7922.e0000 0001 0244 7875Center of Excellence for Prosthetic and Orthopedic Implant, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Pairat Tangpornprasert
- Center of Excellence for Prosthetic and Orthopedic Implant, Chulalongkorn University, Bangkok, 10330, Thailand. .,Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand. .,Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chanyaphan Virulsri
- grid.7922.e0000 0001 0244 7875Center of Excellence for Prosthetic and Orthopedic Implant, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Biomedical Engineering Research Center, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Numphung Numkarunarunrote
- grid.7922.e0000 0001 0244 7875Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Chavarin Amarase
- grid.7922.e0000 0001 0244 7875Hip Fracture Research Unit, Department of Orthopaedics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Thananop Kobchaisawat
- grid.7922.e0000 0001 0244 7875Perceptual Intelligent Computing Lab, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Thanarat Chalidabhongse
- grid.7922.e0000 0001 0244 7875Perceptual Intelligent Computing Lab, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Applied Digital Technology in Medicine Research Group, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
5
|
Artificial intelligence: A review of current applications in hepatocellular carcinoma imaging. Diagn Interv Imaging 2023; 104:24-36. [PMID: 36272931 DOI: 10.1016/j.diii.2022.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and currently the third-leading cause of cancer-related death worldwide. Recently, artificial intelligence (AI) has emerged as an important tool to improve clinical management of HCC, including for diagnosis, prognostication and evaluation of treatment response. Different AI approaches, such as machine learning and deep learning, are both based on the concept of developing prediction algorithms from large amounts of data, or big data. The era of digital medicine has led to a rapidly expanding amount of routinely collected health data which can be leveraged for the development of AI models. Various studies have constructed AI models by using features extracted from ultrasound imaging, computed tomography imaging and magnetic resonance imaging. Most of these models have used convolutional neural networks. These tools have shown promising results for HCC detection, characterization of liver lesions and liver/tumor segmentation. Regarding treatment, studies have outlined a role for AI in evaluation of treatment response and improvement of pre-treatment planning. Several challenges remain to fully integrate AI models in clinical practice. Future research is still needed to robustly evaluate AI algorithms in prospective trials, and improve interpretability, generalizability and transparency. If such challenges can be overcome, AI has the potential to profoundly change the management of patients with HCC. The purpose of this review was to sum up current evidence on AI approaches using imaging for the clinical management of HCC.
Collapse
|
6
|
Proceedings from the Society of Interventional Radiology Foundation Research Consensus Panel on Artificial Intelligence in Interventional Radiology: From Code to Bedside. J Vasc Interv Radiol 2022; 33:1113-1120. [PMID: 35871021 DOI: 10.1016/j.jvir.2022.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 11/24/2022] Open
Abstract
Artificial intelligence (AI)-based technologies are the most rapidly growing field of innovation in healthcare with the promise to achieve substantial improvements in delivery of patient care across all disciplines of medicine. Recent advances in imaging technology along with marked expansion of readily available advanced health information, data offer a unique opportunity for interventional radiology (IR) to reinvent itself as a data-driven specialty. Additionally, the growth of AI-based applications in diagnostic imaging is expected to have downstream effects on all image-guidance modalities. Therefore, the Society of Interventional Radiology Foundation has called upon 13 key opinion leaders in the field of IR to develop research priorities for clinical applications of AI in IR. The objectives of the assembled research consensus panel were to assess the availability and understand the applicability of AI for IR, estimate current needs and clinical use cases, and assemble a list of research priorities for the development of AI in IR. Individual panel members proposed and all participants voted upon consensus statements to rank them according to their overall impact for IR. The results identified the top priorities for the IR research community and provide organizing principles for innovative academic-industrial research collaborations that will leverage both clinical expertise and cutting-edge technology to benefit patient care in IR.
Collapse
|
7
|
Song H, Chen L, Cui Y, Li Q, Wang Q, Fan J, Yang J, Zhang L. Denoising of MR and CT images using cascaded multi-supervision convolutional neural networks with progressive training. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2020.10.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
|
9
|
Araújo JDL, da Cruz LB, Diniz JOB, Ferreira JL, Silva AC, de Paiva AC, Gattass M. Liver segmentation from computed tomography images using cascade deep learning. Comput Biol Med 2022; 140:105095. [PMID: 34902610 DOI: 10.1016/j.compbiomed.2021.105095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 11/27/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Liver segmentation is a fundamental step in the treatment planning and diagnosis of liver cancer. However, manual segmentation of liver is time-consuming because of the large slice quantity and subjectiveness associated with the specialist's experience, which can lead to segmentation errors. Thus, the segmentation process can be automated using computational methods for better time efficiency and accuracy. However, automatic liver segmentation is a challenging task, as the liver can vary in shape, ill-defined borders, and lesions, which affect its appearance. We aim to propose an automatic method for liver segmentation using computed tomography (CT) images. METHODS The proposed method, based on deep convolutional neural network models and image processing techniques, comprise of four main steps: (1) image preprocessing, (2) initial segmentation, (3) reconstruction, and (4) final segmentation. RESULTS We evaluated the proposed method using 131 CT images from the LiTS image base. An average sensitivity of 95.45%, an average specificity of 99.86%, an average Dice coefficient of 95.64%, an average volumetric overlap error (VOE) of 8.28%, an average relative volume difference (RVD) of -0.41%, and an average Hausdorff distance (HD) of 26.60 mm were achieved. CONCLUSIONS This study demonstrates that liver segmentation, even when lesions are present in CT images, can be efficiently performed using a cascade approach and including a reconstruction step based on deep convolutional neural networks.
Collapse
Affiliation(s)
- José Denes Lima Araújo
- Applied Computing Group (NCA - UFMA), Federal University of Maranhão, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga, 65 085-580, São Luís, MA, Brazil.
| | - Luana Batista da Cruz
- Applied Computing Group (NCA - UFMA), Federal University of Maranhão, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga, 65 085-580, São Luís, MA, Brazil.
| | - João Otávio Bandeira Diniz
- Applied Computing Group (NCA - UFMA), Federal University of Maranhão, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga, 65 085-580, São Luís, MA, Brazil; Federal Institute of Maranhão, BR-226, SN, Campus Grajaú, Vila Nova, 65 940-000, Grajaú, MA, Brazil.
| | - Jonnison Lima Ferreira
- Applied Computing Group (NCA - UFMA), Federal University of Maranhão, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga, 65 085-580, São Luís, MA, Brazil; Federal Institute of Amazonas, Rua Santos Dumont, SN, Campus Tabatinga, Vila Verde, 69 640-000, Tabatinga, AM, Brazil.
| | - Aristófanes Corrêa Silva
- Applied Computing Group (NCA - UFMA), Federal University of Maranhão, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga, 65 085-580, São Luís, MA, Brazil.
| | - Anselmo Cardoso de Paiva
- Applied Computing Group (NCA - UFMA), Federal University of Maranhão, Av. dos Portugueses, SN, Campus do Bacanga, Bacanga, 65 085-580, São Luís, MA, Brazil.
| | - Marcelo Gattass
- Pontifical Catholic University of Rio de Janeiro, R. São Vicente, 225, Gávea, 22 453-900, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
RMS-UNet: Residual multi-scale UNet for liver and lesion segmentation. Artif Intell Med 2022; 124:102231. [DOI: 10.1016/j.artmed.2021.102231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/12/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
|
11
|
Qin D, Bu JJ, Liu Z, Shen X, Zhou S, Gu JJ, Wang ZH, Wu L, Dai HF. Efficient Medical Image Segmentation Based on Knowledge Distillation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3820-3831. [PMID: 34283713 DOI: 10.1109/tmi.2021.3098703] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent advances have been made in applying convolutional neural networks to achieve more precise prediction results for medical image segmentation problems. However, the success of existing methods has highly relied on huge computational complexity and massive storage, which is impractical in the real-world scenario. To deal with this problem, we propose an efficient architecture by distilling knowledge from well-trained medical image segmentation networks to train another lightweight network. This architecture empowers the lightweight network to get a significant improvement on segmentation capability while retaining its runtime efficiency. We further devise a novel distillation module tailored for medical image segmentation to transfer semantic region information from teacher to student network. It forces the student network to mimic the extent of difference of representations calculated from different tissue regions. This module avoids the ambiguous boundary problem encountered when dealing with medical imaging but instead encodes the internal information of each semantic region for transferring. Benefited from our module, the lightweight network could receive an improvement of up to 32.6% in our experiment while maintaining its portability in the inference phase. The entire structure has been verified on two widely accepted public CT datasets LiTS17 and KiTS19. We demonstrate that a lightweight network distilled by our method has non-negligible value in the scenario which requires relatively high operating speed and low storage usage.
Collapse
|
12
|
Chen X, Wei X, Tang M, Liu A, Lai C, Zhu Y, He W. Liver segmentation in CT imaging with enhanced mask region-based convolutional neural networks. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1768. [PMID: 35071462 PMCID: PMC8756208 DOI: 10.21037/atm-21-5822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/06/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Liver segmentation in computed tomography (CT) imaging has been widely investigated as a crucial step for analyzing liver characteristics and diagnosing liver diseases. However, obtaining satisfactory liver segmentation performance is highly challenging because of the poor contrast between the liver and its surrounding organs and tissues, the high levels of CT image noise, and the wide variability in liver shapes among patients. METHODS To overcome these challenges, we propose a novel method for liver segmentation in CT image sequences. This method uses an enhanced mask region-based convolutional neural network (Mask R-CNN) with graph-cut segmentation. Specifically, the k-nearest neighbor (k-NN) algorithm is employed to cluster the target liver pixels in order to get an appropriate aspect ratio. Then, anchors are adapted to the liver size using the ratio information. Thus, high-accuracy liver localization can be achieved using the anchors and rotation-invariant object recognition. Next, a fully convolutional network (FCN) is used to segment the foreground objects, and local fine-grained liver detection is realized by pixel prediction. Finally, a whole liver mask is obtained by Mask R-CNN proposed in this paper. RESULTS We proposed a Mask R-CNN algorithm which achieved superior performance in comparison with the conventional Mask R-CNN algorithms in term of the dice similarity coefficient (DSC), and the Medical Image Computing and Computer-Assisted Intervention (MICCAI) metrics. CONCLUSIONS Our experimental results demonstrate that the improved Mask R-CNN architecture has good performance, accuracy, and robustness for liver segmentation in CT image sequences.
Collapse
Affiliation(s)
- Xiaowen Chen
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Xiaoqin Wei
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Mingyue Tang
- Department of Physics, School of Basic Medicine, North Sichuan Medical College, Nanchong, China
| | - Aimin Liu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Ce Lai
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Yuanzhong Zhu
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Wenjing He
- School of Medical Imaging, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
13
|
Yu H, Li J, Zhang L, Cao Y, Yu X, Sun J. Design of lung nodules segmentation and recognition algorithm based on deep learning. BMC Bioinformatics 2021; 22:314. [PMID: 34749636 PMCID: PMC8576909 DOI: 10.1186/s12859-021-04234-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Accurate segmentation and recognition algorithm of lung nodules has great important value of reference for early diagnosis of lung cancer. An algorithm is proposed for 3D CT sequence images in this paper based on 3D Res U-Net segmentation network and 3D ResNet50 classification network. The common convolutional layers in encoding and decoding paths of U-Net are replaced by residual units while the loss function is changed to Dice loss after using cross entropy loss to accelerate network convergence. Since the lung nodules are small and rich in 3D information, the ResNet50 is improved by replacing the 2D convolutional layers with 3D convolutional layers and reducing the sizes of some convolution kernels, 3D ResNet50 network is obtained for the diagnosis of benign and malignant lung nodules. RESULTS 3D Res U-Net was trained and tested on 1044 CT subcases in the LIDC-IDRI database. The segmentation result shows that the Dice coefficient of 3D Res U-Net is above 0.8 for the segmentation of lung nodules larger than 10 mm in diameter. 3D ResNet50 was trained and tested on 2960 lung nodules in the LIDC-IDRI database. The classification result shows that the diagnostic accuracy of 3D ResNet50 is 87.3% and AUC is 0.907. CONCLUSION The 3D Res U-Net module improves segmentation performance significantly with the comparison of 3D U-Net model based on residual learning mechanism. 3D Res U-Net can identify small nodules more effectively and improve its segmentation accuracy for large nodules. Compared with the original network, the classification performance of 3D ResNet50 is significantly improved, especially for small benign nodules.
Collapse
Affiliation(s)
- Hui Yu
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Jinqiu Li
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Lixin Zhang
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Yuzhen Cao
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| | - Xuyao Yu
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Jinglai Sun
- Department of Biomedical Engineering, Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Updates in deep learning research in ophthalmology. Clin Sci (Lond) 2021; 135:2357-2376. [PMID: 34661658 DOI: 10.1042/cs20210207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/14/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022]
Abstract
Ophthalmology has been one of the early adopters of artificial intelligence (AI) within the medical field. Deep learning (DL), in particular, has garnered significant attention due to the availability of large amounts of data and digitized ocular images. Currently, AI in Ophthalmology is mainly focused on improving disease classification and supporting decision-making when treating ophthalmic diseases such as diabetic retinopathy, age-related macular degeneration (AMD), glaucoma and retinopathy of prematurity (ROP). However, most of the DL systems (DLSs) developed thus far remain in the research stage and only a handful are able to achieve clinical translation. This phenomenon is due to a combination of factors including concerns over security and privacy, poor generalizability, trust and explainability issues, unfavorable end-user perceptions and uncertain economic value. Overcoming this challenge would require a combination approach. Firstly, emerging techniques such as federated learning (FL), generative adversarial networks (GANs), autonomous AI and blockchain will be playing an increasingly critical role to enhance privacy, collaboration and DLS performance. Next, compliance to reporting and regulatory guidelines, such as CONSORT-AI and STARD-AI, will be required to in order to improve transparency, minimize abuse and ensure reproducibility. Thirdly, frameworks will be required to obtain patient consent, perform ethical assessment and evaluate end-user perception. Lastly, proper health economic assessment (HEA) must be performed to provide financial visibility during the early phases of DLS development. This is necessary to manage resources prudently and guide the development of DLS.
Collapse
|
15
|
Chi J, Han X, Wu C, Wang H, Ji P. X-Net: Multi-branch UNet-like network for liver and tumor segmentation from 3D abdominal CT scans. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Peng K, Fang B, Zhou M. Cascaded Deeply Supervised Convolutional Networks for Liver Lesion Segmentation. INT J PATTERN RECOGN 2021. [DOI: 10.1142/s0218001421520145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Liver lesion segmentation from abdomen computed tomography (CT) with deep neural networks remains challenging due to the small volume and the unclear boundary. To effectively tackle these problems, in this paper, we propose a cascaded deeply supervised convolutional networks (CDS-Net). The cascaded deep supervision (CDS) mechanism uses auxiliary losses to construct a cascaded segmentation method in a single network, focusing the network attention on pixels that are more difficult to classify, so that the network can segment the lesion more effectively. CDS mechanism can be easily integrated into standard CNN models and it helps to increase the model sensitivity and prediction accuracy. Based on CDS mechanism, we propose a cascaded deep supervised ResUNet, which is an end-to-end liver lesion segmentation network. We conduct experiments on LiTS and 3DIRCADb dataset. Our method has achieved competitive results compared with other state-of-the-art ones.
Collapse
Affiliation(s)
- Kaiyi Peng
- College of Computer Science, Chongqing University, Chongqing 400044, P. R. China
| | - Bin Fang
- College of Computer Science, Chongqing University, Chongqing 400044, P. R. China
| | - Mingliang Zhou
- College of Computer Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
17
|
Akhtar Y, Dakua SP, Abdalla A, Aboumarzouk OM, Ansari MY, Abinahed J, Elakkad MSM, Al-Ansari A. Risk Assessment of Computer-aided Diagnostic Software for Hepatic Resection. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021. [DOI: 10.1109/trpms.2021.3071148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yusuf Akhtar
- Electronics and Communication Sciences Unit, Indian Statistical Institute, Kolkata, India
| | | | | | | | | | - Julien Abinahed
- Hamad General Hospital, Hamad Medical Corporation, Doha, Qatar
| | | | | |
Collapse
|
18
|
Anter AM, Bhattacharyya S, Zhang Z. Multi-stage fuzzy swarm intelligence for automatic hepatic lesion segmentation from CT scans. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2020.106677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|