1
|
Picard M, Scott-Boyer MP, Bodein A, Leclercq M, Prunier J, Périn O, Droit A. Target repositioning using multi-layer networks and machine learning: The case of prostate cancer. Comput Struct Biotechnol J 2024; 24:464-475. [PMID: 38983753 PMCID: PMC11231507 DOI: 10.1016/j.csbj.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
The discovery of novel therapeutic targets, defined as proteins which drugs can interact with to induce therapeutic benefits, typically represent the first and most important step of drug discovery. One solution for target discovery is target repositioning, a strategy which relies on the repurposing of known targets for new diseases, leading to new treatments, less side effects and potential drug synergies. Biological networks have emerged as powerful tools for integrating heterogeneous data and facilitating the prediction of biological or therapeutic properties. Consequently, they are widely employed to predict new therapeutic targets by characterizing potential candidates, often based on their interactions within a Protein-Protein Interaction (PPI) network, and their proximity to genes associated with the disease. However, over-reliance on PPI networks and the assumption that potential targets are necessarily near known genes can introduce biases that may limit the effectiveness of these methods. This study addresses these limitations in two ways. First, by exploiting a multi-layer network which incorporates additional information such as gene regulation, metabolite interactions, metabolic pathways, and several disease signatures such as Differentially Expressed Genes, mutated genes, Copy Number Alteration, and structural variants. Second, by extracting relevant features from the network using several approaches including proximity to disease-associated genes, but also unbiased approaches such as propagation-based methods, topological metrics, and module detection algorithms. Using prostate cancer as a case study, the best features were identified and utilized to train machine learning algorithms to predict 5 novel promising therapeutic targets for prostate cancer: IGF2R, C5AR, RAB7, SETD2 and NPBWR1.
Collapse
Affiliation(s)
- Milan Picard
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Julien Prunier
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Transformation and Innovation Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
2
|
Wang Y, Song J, Dai Q, Duan X. Hierarchical Negative Sampling Based Graph Contrastive Learning Approach for Drug-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:3146-3157. [PMID: 38294927 DOI: 10.1109/jbhi.2024.3360437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Predicting potential drug-disease associations (RDAs) plays a pivotal role in elucidating therapeutic strategies for diseases and facilitating drug repositioning, making it of paramount importance. However, existing methods are constrained and rely heavily on limited domain-specific knowledge, impeding their ability to effectively predict candidate associations between drugs and diseases. Moreover, the simplistic definition of unknown information pertaining to drug-disease relationships as negative samples presents inherent limitations. To overcome these challenges, we introduce a novel hierarchical negative sampling-based graph contrastive model, termed HSGCLRDA, which aims to forecast latent associations between drugs and diseases. In this study, HSGCLRDA integrates the association information as well as similarity between drugs, diseases and proteins. Meanwhile, the model constructs a drug-disease-protein heterogeneous network. Subsequently, employing a hierarchical structural sampling technique, we establish reliable negative drug-disease samples utilizing PageRank algorithms. Utilizing meta-path aggregation within the heterogeneous network, we derive low-dimensional representations for drugs and diseases, thereby constructing global and local feature graphs that capture their interactions comprehensively. To obtain representation information, we adopt a self-supervised graph contrastive approach that leverages graph convolutional networks (GCNs) and second-order GCNs to extract feature graph information. Furthermore, we integrate a contrastive cost function derived from the cross-entropy cost function, facilitating holistic model optimization. Experimental results obtained from benchmark datasets not only showcase the superior performance of HSGCLRDA compared to various baseline methods in predicting RDAs but also emphasize its practical utility in identifying novel potential diseases associated with existing drugs through meticulous case studies.
Collapse
|
3
|
Yu Z, Wu Z, Wang Z, Wang Y, Zhou M, Li W, Liu G, Tang Y. Network-Based Methods and Their Applications in Drug Discovery. J Chem Inf Model 2024; 64:57-75. [PMID: 38150548 DOI: 10.1021/acs.jcim.3c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Drug discovery is time-consuming, expensive, and predominantly follows the "one drug → one target → one disease" paradigm. With the rapid development of systems biology and network pharmacology, a novel drug discovery paradigm, "multidrug → multitarget → multidisease", has emerged. This new holistic paradigm of drug discovery aligns well with the essence of networks, leading to the emergence of network-based methods in the field of drug discovery. In this Perspective, we initially introduce the concept and data sources of networks and highlight classical methodologies employed in network-based methods. Subsequently, we focus on the practical applications of network-based methods across various areas of drug discovery, such as target prediction, virtual screening, prediction of drug therapeutic effects or adverse drug events, and elucidation of molecular mechanisms. In addition, we provide representative web servers for researchers to use network-based methods in specific applications. Finally, we discuss several challenges of network-based methods and the directions for future development. In a word, network-based methods could serve as powerful tools to accelerate drug discovery.
Collapse
Affiliation(s)
- Zhuohang Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zengrui Wu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Ze Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yimeng Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Moran Zhou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
4
|
Kim Y, Cho YR. Predicting Drug-Gene-Disease Associations by Tensor Decomposition for Network-Based Computational Drug Repositioning. Biomedicines 2023; 11:1998. [PMID: 37509637 PMCID: PMC10377142 DOI: 10.3390/biomedicines11071998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Drug repositioning offers the significant advantage of greatly reducing the cost and time of drug discovery by identifying new therapeutic indications for existing drugs. In particular, computational approaches using networks in drug repositioning have attracted attention for inferring potential associations between drugs and diseases efficiently based on the network connectivity. In this article, we proposed a network-based drug repositioning method to construct a drug-gene-disease tensor by integrating drug-disease, drug-gene, and disease-gene associations and predict drug-gene-disease triple associations through tensor decomposition. The proposed method, which ensembles generalized tensor decomposition (GTD) and multi-layer perceptron (MLP), models drug-gene-disease associations through GTD and learns the features of drugs, genes, and diseases through MLP, providing more flexibility and non-linearity than conventional tensor decomposition. We experimented with drug-gene-disease association prediction using two distinct networks created by chemical structures and ATC codes as drug features. Moreover, we leveraged drug, gene, and disease latent vectors obtained from the predicted triple associations to predict drug-disease, drug-gene, and disease-gene pairwise associations. Our experimental results revealed that the proposed ensemble method was superior for triple association prediction. The ensemble model achieved an AUC of 0.96 in predicting triple associations for new drugs, resulting in an approximately 7% improvement over the performance of existing models. It also showed competitive accuracy for pairwise association prediction compared with previous methods. This study demonstrated that incorporating genetic information leads to notable advancements in drug repositioning.
Collapse
Affiliation(s)
- Yoonbee Kim
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
| | - Young-Rae Cho
- Division of Software, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
- Division of Digital Healthcare, Yonsei University Mirae Campus, Wonju-si 26493, Gangwon-do, Republic of Korea
| |
Collapse
|
5
|
Wang Y, Song J, Wei M, Duan X. Predicting Potential Drug-Disease Associations Based on Hypergraph Learning with Subgraph Matching. Interdiscip Sci 2023; 15:249-261. [PMID: 36906712 DOI: 10.1007/s12539-023-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 03/13/2023]
Abstract
The search for potential drug-disease associations (DDA) can speed up drug development cycles, reduce costly wasted resources, and accelerate disease treatment by repurposing existing drugs that can control further disease progression. As technologies such as deep learning continue to mature, many researchers tend to use emerging technologies to predict potential DDA. The performance of DDA prediction is still challenging and there is some space for improvement due to issues such as the small number of existing associations and possible noise in the data. To better predict DDA, we propose a computational approach based on hypergraph learning with subgraph matching (HGDDA). In particular, HGDDA first extracts feature subgraph information in the validated drug-disease association network and proposes a negative sampling strategy based on similarity network to reduce the data imbalance. Second, the hypergraph Unet module is used by extracting Finally, the potential DDA is predicted by designing a hypergraph combination module to convolution and pooling the two constructed hypergraphs separately, and calculating the difference information between the subgraphs using cosine similarity for node matching. The performance of HGDDA is verified under two standard datasets by 10-fold cross-validation (10-CV), and the results outperform existing drug-disease prediction methods. In addition, to validate the overall utility of the model, the top 10 drugs for the specific disease are predicted through the case study and validated using the CTD database.
Collapse
Affiliation(s)
- Yuanxu Wang
- Key Laboratory of Big Data Applied Technology State Ethnic Affairs Commission, Dalian Minzu University, Dalian, 116650, China.,School of Computer Science and Engineering, Dalian Minzu University, Dalian, 116650, China
| | - Jinmiao Song
- Key Laboratory of Big Data Applied Technology State Ethnic Affairs Commission, Dalian Minzu University, Dalian, 116650, China. .,School of Information Science and Engineering, Xinjiang University, Urumqi, 830046, China.
| | - Mingjie Wei
- Key Laboratory of Big Data Applied Technology State Ethnic Affairs Commission, Dalian Minzu University, Dalian, 116650, China.,School of Computer Science and Engineering, Dalian Minzu University, Dalian, 116650, China
| | - Xiaodong Duan
- Key Laboratory of Big Data Applied Technology State Ethnic Affairs Commission, Dalian Minzu University, Dalian, 116650, China.,School of Computer Science and Engineering, Dalian Minzu University, Dalian, 116650, China
| |
Collapse
|
6
|
Azuma I, Mizuno T, Kusuhara H. NRBdMF: A Recommendation Algorithm for Predicting Drug Effects Considering Directionality. J Chem Inf Model 2023; 63:474-483. [PMID: 36635231 DOI: 10.1021/acs.jcim.2c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Predicting the novel effects of drugs based on information about approved drugs can be regarded as a recommendation system. Matrix factorization is one of the most used recommendation systems, and various algorithms have been devised for it. A literature survey and summary of existing algorithms for predicting drug effects demonstrated that most such methods, including neighborhood regularized logistic matrix factorization, which was the best performer in benchmark tests, used a binary matrix that considers only the presence or absence of interactions. However, drug effects are known to have two opposite aspects, such as side effects and therapeutic effects. In the present study, we proposed using neighborhood regularized bidirectional matrix factorization (NRBdMF) to predict drug effects by incorporating bidirectionality, which is a characteristic property of drug effects. We used this proposed method for predicting side effects using a matrix that considered the bidirectionality of drug effects, in which known side effects were assigned a positive (+1) label and known treatment effects were assigned a negative (-1) label. The NRBdMF model, which utilizes drug bidirectional information, achieved enrichment of side effects at the top and indications at the bottom of the prediction list. This first attempt to consider the bidirectional nature of drug effects using NRBdMF showed that it reduced false positives and produced a highly interpretable output.
Collapse
Affiliation(s)
- Iori Azuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|
7
|
Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning. Biomolecules 2022; 12:biom12101497. [PMID: 36291706 PMCID: PMC9599692 DOI: 10.3390/biom12101497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/18/2022] Open
Abstract
Drug repositioning, which involves the identification of new therapeutic indications for approved drugs, considerably reduces the time and cost of developing new drugs. Recent computational drug repositioning methods use heterogeneous networks to identify drug–disease associations. This review reveals existing network-based approaches for predicting drug–disease associations in three major categories: graph mining, matrix factorization or completion, and deep learning. We selected eleven methods from the three categories to compare their predictive performances. The experiment was conducted using two uniform datasets on the drug and disease sides, separately. We constructed heterogeneous networks using drug–drug similarities based on chemical structures and ATC codes, ontology-based disease–disease similarities, and drug–disease associations. An improved evaluation metric was used to reflect data imbalance as positive associations are typically sparse. The prediction results demonstrated that methods in the graph mining and matrix factorization or completion categories performed well in the overall assessment. Furthermore, prediction on the drug side had higher accuracy than on the disease side. Selecting and integrating informative drug features in drug–drug similarity measurement are crucial for improving disease-side prediction.
Collapse
|
8
|
Wang L, Tan Y, Yang X, Kuang L, Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: from biological data to computational models. Brief Bioinform 2022; 23:6553604. [PMID: 35325024 DOI: 10.1093/bib/bbac080] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
In recent years, with the rapid development of techniques in bioinformatics and life science, a considerable quantity of biomedical data has been accumulated, based on which researchers have developed various computational approaches to discover potential associations between human microbes, drugs and diseases. This paper provides a comprehensive overview of recent advances in prediction of potential correlations between microbes, drugs and diseases from biological data to computational models. Firstly, we introduced the widely used datasets relevant to the identification of potential relationships between microbes, drugs and diseases in detail. And then, we divided a series of a lot of representative computing models into five major categories including network, matrix factorization, matrix completion, regularization and artificial neural network for in-depth discussion and comparison. Finally, we analysed possible challenges and opportunities in this research area, and at the same time we outlined some suggestions for further improvement of predictive performances as well.
Collapse
Affiliation(s)
- Lei Wang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Yaqin Tan
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Xiaoyu Yang
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China.,Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Linai Kuang
- Key Laboratory of Hunan Province for Internet of Things and Information Security, Xiangtan University, Xiangtan, 411105, Hunan, China
| | - Pengyao Ping
- College of Computer Engineering & Applied Mathematics, Changsha University, Changsha, 410022, Hunan, China
| |
Collapse
|
9
|
Wang W, Zhang X, Dai DQ. springD2A: capturing uncertainty in disease-drug association prediction with model integration. Bioinformatics 2022; 38:1353-1360. [PMID: 34864881 DOI: 10.1093/bioinformatics/btab820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023] Open
Abstract
MOTIVATION Drug repositioning that aims to find new indications for existing drugs has been an efficient strategy for drug discovery. In the scenario where we only have confirmed disease-drug associations as positive pairs, a negative set of disease-drug pairs is usually constructed from the unknown disease-drug pairs in previous studies, where we do not know whether drugs and diseases can be associated, to train a model for disease-drug association prediction (drug repositioning). Drugs and diseases in these negative pairs can potentially be associated, but most studies have ignored them. RESULTS We present a method, springD2A, to capture the uncertainty in the negative pairs, and to discriminate between positive and unknown pairs because the former are more reliable. In springD2A, we introduce a spring-like penalty for the loss of negative pairs, which is strong if they are too close in a unit sphere, but mild if they are at a moderate distance. We also design a sequential sampling in which the probability of an unknown disease-drug pair sampled as negative is proportional to its score predicted as positive. Multiple models are learned during sequential sampling, and we adopt parameter- and feature-based ensemble schemes to boost performance. Experiments show springD2A is an effective tool for drug-repositioning. AVAILABILITY AND IMPLEMENTATION A python implementation of springD2A and datasets used in this study are available at https://github.com/wangyuanhao/springD2A. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Weiwen Wang
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou 510000, China
| | - Xiwen Zhang
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou 510000, China
| | - Dao-Qing Dai
- Intelligent Data Center, School of Mathematics, Sun Yat-Sen University, Guangzhou 510000, China
| |
Collapse
|