1
|
Estimating bonobo ( Pan paniscus) and chimpanzee ( Pan troglodytes) evolutionary history from nucleotide site patterns. Proc Natl Acad Sci U S A 2022; 119:e2200858119. [PMID: 35452306 PMCID: PMC9170072 DOI: 10.1073/pnas.2200858119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is genomic evidence of widespread admixture in deep time between many closely related species, including humans. Our closest living relatives, bonobos and chimpanzees, may also exhibit such patterns. However, assessing the exact degree of interbreeding remains challenging because previous studies have resulted in multiple inconsistent demographic models. We use an approach that addresses these gaps by analyzing all lineages, simultaneously estimating parameters, and comparing previously models. We find evidence of considerable introgression from western into eastern chimpanzees. We also show more breeding females than males and evidence of male-biased dispersal in western chimpanzees. These findings highlight the extent of admixture in bonobo and chimpanzee evolutionary history and are consistent with substantial differences between past and present chimpanzee biogeography. Admixture appears increasingly ubiquitous in the evolutionary history of various taxa, including humans. Such gene flow likely also occurred among our closest living relatives: bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). However, our understanding of their evolutionary history has been limited by studies that do not consider all Pan lineages or do not analyze all lineages simultaneously, resulting in conflicting demographic models. Here, we investigate this gap in knowledge using nucleotide site patterns calculated from whole-genome sequences from the autosomes of 71 bonobos and chimpanzees, representing all five extant Pan lineages. We estimated demographic parameters and compared all previously proposed demographic models for this clade. We further considered sex bias in Pan evolutionary history by analyzing the site patterns from the X chromosome. We show that 1) 21% of autosomal DNA in eastern chimpanzees derives from western chimpanzee introgression and that 2) all four chimpanzee lineages share a common ancestor about 987,000 y ago, much earlier than previous estimates. In addition, we suggest that 3) there was male reproductive skew throughout Pan evolutionary history and find evidence of 4) male-biased dispersal from western to eastern chimpanzees. Collectively, these results offer insight into bonobo and chimpanzee evolutionary history and suggest considerable differences between current and historic chimpanzee biogeography.
Collapse
|
2
|
Refining models of archaic admixture in Eurasia with ArchaicSeeker 2.0. Nat Commun 2021; 12:6232. [PMID: 34716342 PMCID: PMC8556419 DOI: 10.1038/s41467-021-26503-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/06/2021] [Indexed: 12/30/2022] Open
Abstract
We developed a method, ArchaicSeeker 2.0, to identify introgressed hominin sequences and model multiple-wave admixture. The new method enabled us to discern two waves of introgression from both Denisovan-like and Neanderthal-like hominins in present-day Eurasian populations and an ancient Siberian individual. We estimated that an early Denisovan-like introgression occurred in Eurasia around 118.8-94.0 thousand years ago (kya). In contrast, we detected only one single episode of Denisovan-like admixture in indigenous peoples eastern to the Wallace-Line. Modeling ancient admixtures suggested an early dispersal of modern humans throughout Asia before the Toba volcanic super-eruption 74 kya, predating the initial peopling of Asia as proposed by the traditional Out-of-Africa model. Survived archaic sequences are involved in various phenotypes including immune and body mass (e.g., ZNF169), cardiovascular and lung function (e.g., HHAT), UV response and carbohydrate metabolism (e.g., HYAL1/HYAL2/HYAL3), while "archaic deserts" are enriched with genes associated with skin development and keratinization.
Collapse
|
3
|
Ahlquist KD, Bañuelos MM, Funk A, Lai J, Rong S, Villanea FA, Witt KE. Our Tangled Family Tree: New Genomic Methods Offer Insight into the Legacy of Archaic Admixture. Genome Biol Evol 2021; 13:evab115. [PMID: 34028527 PMCID: PMC8480178 DOI: 10.1093/gbe/evab115] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 11/30/2022] Open
Abstract
The archaic ancestry present in the human genome has captured the imagination of both scientists and the wider public in recent years. This excitement is the result of new studies pushing the envelope of what we can learn from the archaic genetic information that has survived for over 50,000 years in the human genome. Here, we review the most recent ten years of literature on the topic of archaic introgression, including the current state of knowledge on Neanderthal and Denisovan introgression, as well as introgression from other as-yet unidentified archaic populations. We focus this review on four topics: 1) a reimagining of human demographic history, including evidence for multiple admixture events between modern humans, Neanderthals, Denisovans, and other archaic populations; 2) state-of-the-art methods for detecting archaic ancestry in population-level genomic data; 3) how these novel methods can detect archaic introgression in modern African populations; and 4) the functional consequences of archaic gene variants, including how those variants were co-opted into novel function in modern human populations. The goal of this review is to provide a simple-to-access reference for the relevant methods and novel data, which has changed our understanding of the relationship between our species and its siblings. This body of literature reveals the large degree to which the genetic legacy of these extinct hominins has been integrated into the human populations of today.
Collapse
Affiliation(s)
- K D Ahlquist
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Mayra M Bañuelos
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Alyssa Funk
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Jiaying Lai
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Brown Center for Biomedical Informatics, Brown University, Providence, Rhode Island, USA
| | - Stephen Rong
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island, USA
| | - Fernando A Villanea
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Anthropology, University of Colorado Boulder, Colorado, USA
| | - Kelsey E Witt
- Center for Computational Molecular Biology, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
4
|
Sankararaman S. Methods for detecting introgressed archaic sequences. Curr Opin Genet Dev 2020; 62:85-90. [PMID: 32717667 PMCID: PMC7484293 DOI: 10.1016/j.gde.2020.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/12/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022]
Abstract
Analysis of genome sequences from archaic and modern humans have revealed multiple episodes of admixture between highly-diverged population groups. Statistical methods that attempt to localize DNA segments introduced by these events offer a powerful tool to investigate recent human evolution. We review recent advances in methods for detecting introgressed sequences.
Collapse
Affiliation(s)
- Sriram Sankararaman
- Department of Computer Science, University of California, Los Angeles, CA 90095, United States; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, United States; Department of Computational Medicine, University of California, Los Angeles, CA 90095, United States.
| |
Collapse
|