1
|
Dai W, Pang S, He Z, Fu X, Liu L, Liu L, Yu N. Prediction of miRNA-disease association based on heterogeneous hypergraph convolution and heterogeneous graph multi-scale convolution. Health Inf Sci Syst 2025; 13:4. [PMID: 39659869 PMCID: PMC11625705 DOI: 10.1007/s13755-024-00319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Making the accurate prediction of miRNA-disease associations essential for medical interventions. Current computational models often fail to capture the complexity of miRNA-disease associations. This study proposes HHMDA, a method based on heterogeneous hypergraph convolution and heterogeneous graph multi-scale convolution, to predict the association between miRNA and disease. Firstly, HHMDA constructs a heterogeneous graph of miRNA-disease relationships. Then, a graph convolution is run on the heterogeneous graph to capture the multi-scale feature representations of miRNA and disease. MiRNA-disease association are reconstructed based on these features. Meanwhile, HHMDA constructs a heterogeneous hypergraph with miRNAs and diseases as nodes, and the hyperedges consist of miRNAs and diseases linked to the same genes. HHMDA performs hypergraph graph convolution operation on the heterogeneous hypergraph to extract the high-order features of miRNA and disease. Finally, these features are leveraged to calculate the Laplacian regularization loss and combined with the miRNA-disease association matrix reconstruction loss to optimize the model. The experimental results show that HHMDA has advantages over the existing state-of-the-art methods under different experimental settings.
Collapse
Affiliation(s)
- Wei Dai
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
- Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China
| | - Sifan Pang
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
| | - Zhichen He
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
| | - Xiaodong Fu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
- Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China
| | - Li Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
- Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China
| | - Lijun Liu
- Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming, 650050 China
- Computer Technology Application Key Lab of Yunnan Province, Kunming University of Science and Technology, Kunming, 650050 China
| | - Ning Yu
- Department of Computing Sciences, The College at Brockport, State University of New York, 350 New Campus Drive, Brockport, NY 14422 USA
| |
Collapse
|
2
|
Santangelo BE, Bada M, Hunter LE, Lozupone C. Hypothesizing mechanistic links between microbes and disease using knowledge graphs. Sci Rep 2025; 15:6905. [PMID: 40011529 PMCID: PMC11865272 DOI: 10.1038/s41598-025-91230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/19/2025] [Indexed: 02/28/2025] Open
Abstract
Knowledge graphs have been a useful tool for many biomedical applications because of their effective representation of biological concepts. Plentiful evidence exists linking the gut microbiome to disease in a correlative context, but uncovering the mechanistic explanation for those associations remains a challenge. Here we demonstrate the potential of knowledge graphs to hypothesize plausible mechanistic accounts of host-microbe interactions in disease. We have constructed a knowledge graph of linked microbes, genes and metabolites called MGMLink, and, using a shortest path or template-based search through the graph and a novel path-prioritization methodology based on the structure of the knowledge graph, we show that this knowledge supports inference of mechanistic hypotheses that explain observed relationships between microbes and disease phenotypes. We discuss specific applications of this methodology in inflammatory bowel disease and Parkinson's disease. This approach enables mechanistic hypotheses surrounding the complex interactions between gut microbes and disease to be generated in a scalable and comprehensive manner.
Collapse
Affiliation(s)
- Brook E Santangelo
- Department of Biomedical Informatics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA.
| | - Michael Bada
- Department of Pediatrics, University of Chicago, Chicago, IL, USA
| | | | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
3
|
Anjum M, Min H, Ahmed Z. A Novel Framework for Data Assessment That Uses Edge Technology to Improve the Detection of Communicable Diseases. Diagnostics (Basel) 2024; 14:1148. [PMID: 38893673 PMCID: PMC11171775 DOI: 10.3390/diagnostics14111148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Spreading quickly throughout populations, whether animal or human-borne, infectious illnesses provide serious risks and difficulties. Controlling their spread and averting disinformation requires effective risk assessment and epidemic identification. Technology-enabled data analysis on diseases allows for quick solutions to these problems. A Combinational Data Assessment Scheme intended to accelerate disease detection is presented in this paper. The suggested strategy avoids duplicate data replication by sharing data among edge devices. It uses indexed data gathering to improve early detection by using tree classifiers to discern between various kinds of information. Both data similarity and index measurements are considered throughout the data analysis stage to minimize assessment errors. Accurate risk detection and assessment based on information kind and sharing frequency are ensured by comparing non-linear accumulations with accurate shared edge data. The suggested system exhibits high accuracy, low mistakes, and decreased data repetition to improve overall effectiveness in illness detection and risk reduction.
Collapse
Affiliation(s)
- Mohd Anjum
- Department of Computer Engineering, Aligarh Muslim University, Aligarh 202002, India;
| | - Hong Min
- School of Computing, Gachon University, Seongnam 13120, Republic of Korea
| | - Zubair Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Chen L, Zhao X. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:20553-20575. [PMID: 38124565 DOI: 10.3934/mbe.2023909] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Increasing amounts of experimental studies have shown that circular RNAs (circRNAs) play important regulatory roles in human diseases through interactions with related microRNAs (miRNAs). CircRNAs have become new potential disease biomarkers and therapeutic targets. Predicting circRNA-disease association (CDA) is of great significance for exploring the pathogenesis of complex diseases, which can improve the diagnosis level of diseases and promote the targeted therapy of diseases. However, determination of CDAs through traditional clinical trials is usually time-consuming and expensive. Computational methods are now alternative ways to predict CDAs. In this study, a new computational method, named PCDA-HNMP, was designed. For obtaining informative features of circRNAs and diseases, a heterogeneous network was first constructed, which defined circRNAs, mRNAs, miRNAs and diseases as nodes and associations between them as edges. Then, a deep analysis was conducted on the heterogeneous network by extracting meta-paths connecting to circRNAs (diseases), thereby mining hidden associations between various circRNAs (diseases). These associations constituted the meta-path-induced networks for circRNAs and diseases. The features of circRNAs and diseases were derived from the aforementioned networks via mashup. On the other hand, miRNA-disease associations (mDAs) were employed to improve the model's performance. miRNA features were yielded from the meta-path-induced networks on miRNAs and circRNAs, which were constructed from the meta-paths connecting miRNAs and circRNAs in the heterogeneous network. A concatenation operation was adopted to build the features of CDAs and mDAs. Such representations of CDAs and mDAs were fed into XGBoost to set up the model. The five-fold cross-validation yielded an area under the curve (AUC) of 0.9846, which was better than those of some existing state-of-the-art methods. The employment of mDAs can really enhance the model's performance and the importance analysis on meta-path-induced networks shown that networks produced by the meta-paths containing validated CDAs provided the most important contributions.
Collapse
Affiliation(s)
- Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xiaoyu Zhao
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
5
|
Noori A, Li MM, Tan ALM, Zitnik M. Metapaths: similarity search in heterogeneous knowledge graphs via meta-paths. Bioinformatics 2023; 39:btad297. [PMID: 37140542 PMCID: PMC10209523 DOI: 10.1093/bioinformatics/btad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/10/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023] Open
Abstract
SUMMARY Heterogeneous knowledge graphs (KGs) have enabled the modeling of complex systems, from genetic interaction graphs and protein-protein interaction networks to networks representing drugs, diseases, proteins, and side effects. Analytical methods for KGs rely on quantifying similarities between entities, such as nodes, in the graph. However, such methods must consider the diversity of node and edge types contained within the KG via, for example, defined sequences of entity types known as meta-paths. We present metapaths, the first R software package to implement meta-paths and perform meta-path-based similarity search in heterogeneous KGs. The metapaths package offers various built-in similarity metrics for node pair comparison by querying KGs represented as either edge or adjacency lists, as well as auxiliary aggregation methods to measure set-level relationships. Indeed, evaluation of these methods on an open-source biomedical KG recovered meaningful drug and disease-associated relationships, including those in Alzheimer's disease. The metapaths framework facilitates the scalable and flexible modeling of network similarities in KGs with applications across KG learning. AVAILABILITY AND IMPLEMENTATION The metapaths R package is available via GitHub at https://github.com/ayushnoori/metapaths and is released under MPL 2.0 (Zenodo DOI: 10.5281/zenodo.7047209). Package documentation and usage examples are available at https://www.ayushnoori.com/metapaths.
Collapse
Affiliation(s)
- Ayush Noori
- Harvard College, Cambridge, MA 02138, United States
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Michelle M Li
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Amelia L M Tan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
6
|
Zhao H, Li Z, You ZH, Nie R, Zhong T. Predicting Mirna-Disease Associations Based on Neighbor Selection Graph Attention Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1298-1307. [PMID: 36067101 DOI: 10.1109/tcbb.2022.3204726] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Numerous experiments have shown that the occurrence of complex human diseases is often accompanied by abnormal expression of microRNA (miRNA). Identifying the associations between miRNAs and diseases is of great significance in the development of clinical medicine. However, traditional experimental methods are often time-consuming and inefficient. To this end, we proposed a deep learning method based on neighbor selection graph attention networks for predicting miRNA-disease associations (NSAMDA). Specifically, we firstly fused miRNA sequence similarity information and miRNA integrated similarity information to enrich miRNA feature information. Secondly, we used the fused miRNA feature information and disease integrated similarity information to construct a miRNA-disease heterogeneous graph. Thirdly, we introduced a neighbor selection method based on graph attention networks to select k-most important neighbors for aggregation. Finally, we used the inner product decoder to score miRNA-disease pairs. The results of five-fold cross-validation show that the mean AUC of NSAMDA is 93.69% on HMDD v2.0 dataset. In addition, case studies on the esophageal neoplasm, lung neoplasm and lymphoma were carried out to further confirm the effectiveness of the NSAMDA model. The results showed that the NSAMDA method achieves satisfactory performance on predicting miRNA-disease associations and is superior to the most advanced model.
Collapse
|
7
|
Pang S, Zhuang Y, Qiao S, Wang F, Wang S, Lv Z. DCTGM: A Novel Dual-channel Transformer Graph Model for miRNA-disease Association Prediction. Cognit Comput 2022. [DOI: 10.1007/s12559-022-10092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Lu S, Liang Y, Li L, Liao S, Ouyang D. Inferring human miRNA–disease associations via multiple kernel fusion on GCNII. Front Genet 2022; 13:980497. [PMID: 36134032 PMCID: PMC9483142 DOI: 10.3389/fgene.2022.980497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing evidence shows that the occurrence of human complex diseases is closely related to the mutation and abnormal expression of microRNAs(miRNAs). MiRNAs have complex and fine regulatory mechanisms, which makes it a promising target for drug discovery and disease diagnosis. Therefore, predicting the potential miRNA-disease associations has practical significance. In this paper, we proposed an miRNA–disease association predicting method based on multiple kernel fusion on Graph Convolutional Network via Initial residual and Identity mapping (GCNII), called MKFGCNII. Firstly, we built a heterogeneous network of miRNAs and diseases to extract multi-layer features via GCNII. Secondly, multiple kernel fusion method was applied to weight fusion of embeddings at each layer. Finally, Dual Laplacian Regularized Least Squares was used to predict new miRNA–disease associations by the combined kernel in miRNA and disease spaces. Compared with the other methods, MKFGCNII obtained the highest AUC value of 0.9631. Code is available at https://github.com/cuntjx/bioInfo.
Collapse
Affiliation(s)
- Shanghui Lu
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
- School of Mathematics and Physics, Hechi University, Hechi, China
| | - Yong Liang
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
- Peng Cheng Laboratory, Shenzhen, China
- *Correspondence: Yong Liang,
| | - Le Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| | - Shuilin Liao
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| | - Dong Ouyang
- School of Computer Science and Engineering, Macau University of Science and Technology, Taipa, China
| |
Collapse
|
9
|
Rao Y, Xie M, Wang H. Predict potential miRNA-disease associations based on bounded nuclear norm regularization. Front Genet 2022; 13:978975. [PMID: 36072658 PMCID: PMC9441603 DOI: 10.3389/fgene.2022.978975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing evidences show that the abnormal microRNA (miRNA) expression is related to a variety of complex human diseases. However, the current biological experiments to determine miRNA-disease associations are time consuming and expensive. Therefore, computational models to predict potential miRNA-disease associations are in urgent need. Though many miRNA-disease association prediction methods have been proposed, there is still a room to improve the prediction accuracy. In this paper, we propose a matrix completion model with bounded nuclear norm regularization to predict potential miRNA-disease associations, which is called BNNRMDA. BNNRMDA at first constructs a heterogeneous miRNA-disease network integrating the information of miRNA self-similarity, disease self-similarity, and the known miRNA-disease associations, which is represented by an adjacent matrix. Then, it models the miRNA-disease prediction as a relaxed matrix completion with error tolerance, value boundary and nuclear norm minimization. Finally it implements the alternating direction method to solve the matrix completion problem. BNNRMDA makes full use of available information of miRNAs and diseases, and can deals with the data containing noise. Compared with four state-of-the-art methods, the experimental results show BNNRMDA achieved the best performance in five-fold cross-validation and leave-one-out cross-validation. The case studies on two complex human diseases showed that 47 of the top 50 prediction results of BNNRMDA have been verified in the latest HMDD database.
Collapse
|
10
|
Huang D, An J, Zhang L, Liu B. Computational method using heterogeneous graph convolutional network model combined with reinforcement layer for MiRNA-disease association prediction. BMC Bioinformatics 2022; 23:299. [PMID: 35879658 PMCID: PMC9316361 DOI: 10.1186/s12859-022-04843-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A large number of evidences from biological experiments have confirmed that miRNAs play an important role in the progression and development of various human complex diseases. However, the traditional experiment methods are expensive and time-consuming. Therefore, it is a challenging task that how to develop more accurate and efficient methods for predicting potential associations between miRNA and disease. RESULTS In the study, we developed a computational model that combined heterogeneous graph convolutional network with enhanced layer for miRNA-disease association prediction (HGCNELMDA). The major improvement of our method lies in through restarting the random walk optimized the original features of nodes and adding a reinforcement layer to the hidden layer of graph convolutional network retained similar information between nodes in the feature space. In addition, the proposed approach recalculated the influence of neighborhood nodes on target nodes by introducing the attention mechanism. The reliable performance of the HGCNELMDA was certified by the AUC of 93.47% in global leave-one-out cross-validation (LOOCV), and the average AUCs of 93.01% in fivefold cross-validation. Meanwhile, we compared the HGCNELMDA with the state‑of‑the‑art methods. Comparative results indicated that o the HGCNELMDA is very promising and may provide a cost‑effective alternative for miRNA-disease association prediction. Moreover, we applied HGCNELMDA to 3 different case studies to predict potential miRNAs related to lung cancer, prostate cancer, and pancreatic cancer. Results showed that 48, 50, and 50 of the top 50 predicted miRNAs were supported by experimental association evidence. Therefore, the HGCNELMDA is a reliable method for predicting disease-related miRNAs. CONCLUSIONS The results of the HGCNELMDA method in the LOOCV (leave-one-out cross validation, LOOCV) and 5-cross validations were 93.47% and 93.01%, respectively. Compared with other typical methods, the performance of HGCNELMDA is higher. Three cases of lung cancer, prostate cancer, and pancreatic cancer were studied. Among the predicted top 50 candidate miRNAs, 48, 50, and 50 were verified in the biological database HDMMV2.0. Therefore; this further confirms the feasibility and effectiveness of our method. Therefore, this further confirms the feasibility and effectiveness of our method. To facilitate extensive studies for future disease-related miRNAs research, we developed a freely available web server called HGCNELMDA is available at http://124.221.62.44:8080/HGCNELMDA.jsp .
Collapse
Affiliation(s)
- Dan Huang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China
| | - JiYong An
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China.
| | - Lei Zhang
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China.
| | - BaiLong Liu
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, 21116, Jiangsu, China
| |
Collapse
|
11
|
A miRNA-Disease Association Identification Method Based on Reliable Negative Sample Selection and Improved Single-Hidden Layer Feedforward Neural Network. INFORMATION 2022. [DOI: 10.3390/info13030108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
miRNAs are a category of important endogenous non-coding small RNAs and are ubiquitous in eukaryotes. They are widely involved in the regulatory process of post-transcriptional gene expression and play a critical part in the development of human diseases. By utilizing recent advancements in big data technology, using bioinformatics methods to identify causative miRNA becomes a hot spot. In this paper, a method called RNSSLFN is proposed to identify the miRNA-disease associations by reliable negative sample selection and an improved single-hidden layer feedforward neural network (SLFN). It involves, firstly, obtaining integrated similarity for miRNAs and diseases; next, selecting reliable negative samples from unknown miRNA-disease associations via distinguishing up-regulated or down-regulated miRNAs; then, introducing an improved SLFN to solve the prediction task. The experimental results on the latest data sets HMDD v3.2 and the framework of 5-fold cross-validation (CV) show that the average AUC and AUPR of RNSSLFN achieve 0.9316 and 0.9065 m, respectively, which are superior to the other three state-of-the-art methods. Furthermore, in the case studies of 10 common cancers, more than 70% of the top 30 predicted miRNA-disease association pairs are verified in the databases, which further confirms the reliability and effectiveness of the RNSSLFN model. Generally, RNSSLFN in predicting miRNA-disease associations has prodigious potential and extensive foreground.
Collapse
|
12
|
Li Z, Zhong T, Huang D, You ZH, Nie R. Hierarchical graph attention network for miRNA-disease association prediction. Mol Ther 2022; 30:1775-1786. [PMID: 35121109 PMCID: PMC9077381 DOI: 10.1016/j.ymthe.2022.01.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/29/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Many biological studies show that the mutation and abnormal expression of microRNAs (miRNAs) could cause a variety of diseases. As an important biomarker for disease diagnosis, miRNA is helpful to understand pathogenesis, and could promote the identification, diagnosis and treatment of diseases. However, the pathogenic mechanism how miRNAs affect these diseases has not been fully understood. Therefore, predicting the potential miRNA-disease associations is of great importance for the development of clinical medicine and drug research. In this study, we proposed a novel deep learning model based on hierarchical graph attention network for predicting miRNA-disease associations (HGANMDA). Firstly, we constructed a miRNA-disease-lncRNA heterogeneous graph based on known miRNA-disease associations, miRNA-lncRNA associations and disease-lncRNA associations. Secondly, the node-layer attention was applied to learn the importance of neighbor nodes based on different meta-paths. Thirdly, the semantic-layer attention was applied to learn the importance of different meta-paths. Finally, a bilinear decoder was employed to reconstruct the connections between miRNAs and diseases. The extensive experimental results indicated that our model achieved good performance and satisfactory results in predicting miRNA-disease associations.
Collapse
|
13
|
Pidò S, Crovari P, Garzotto F. Modelling the bioinformatics tertiary analysis research process. BMC Bioinformatics 2021; 22:452. [PMID: 34592928 PMCID: PMC8482564 DOI: 10.1186/s12859-021-04310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background With the advancements of Next Generation Techniques, a tremendous amount of genomic information has been made available to be analyzed by means of computational methods. Bioinformatics Tertiary Analysis is a complex multidisciplinary process that represents the final step of the whole bioinformatics analysis pipeline. Despite the popularity of the subject, the Bioinformatics Tertiary Analysis process has not yet been specified in a systematic way. The lack of a reference model results into a plethora of technological tools that are designed mostly on the data and not on the human process involved in Tertiary Analysis, making such systems difficult to use and to integrate. Methods To address this problem, we propose a conceptual model that captures the salient characteristics of the research methods and human tasks involved in Bioinformatics Tertiary Analysis. The model is grounded on a user study that involved bioinformatics specialists for the elicitation of a hierarchical task tree representing the Tertiary Analysis process. The outcome was refined and validated using the results of a vast survey of the literature reporting examples of Bioinformatics Tertiary Analysis activities. Results The final hierarchical task tree was then converted into an ontological representation using an ontology standard formalism. The results of our research provides a reference process model for Tertiary Analysis that can be used both to analyze and to compare existing tools, or to design new tools. Conclusions To highlight the potential of our approach and to exemplify its concrete applications, we describe a new bioinformatics tool and how the proposed process model informed its design. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04310-5.
Collapse
Affiliation(s)
- Sara Pidò
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Pietro Crovari
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Franca Garzotto
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
14
|
Dai Q, Chu Y, Li Z, Zhao Y, Mao X, Wang Y, Xiong Y, Wei DQ. MDA-CF: Predicting MiRNA-Disease associations based on a cascade forest model by fusing multi-source information. Comput Biol Med 2021; 136:104706. [PMID: 34371319 DOI: 10.1016/j.compbiomed.2021.104706] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are significant regulators in various biological processes. They may become promising biomarkers or therapeutic targets, which provide a new perspective in diagnosis and treatment of multiple diseases. Since the experimental methods are always costly and resource-consuming, prediction of disease-related miRNAs using computational methods is in great need. In this study, we developed MDA-CF to identify underlying miRNA-disease associations based on a cascade forest model. In this method, multi-source information was integrated to represent miRNAs and diseases comprehensively, and the autoencoder was utilized for dimension reduction to obtain the optimal feature space. The cascade forest model was then employed for miRNA-disease association prediction. As a result, the average AUC of MDA-CF was 0.9464 on HMDD v3.2 in five-fold cross-validation. Compared with previous computational methods, MDA-CF performed better on HMDD v2.0 with an average AUC of 0.9258. Moreover, MDA-CF was implemented to investigate colon neoplasm, breast neoplasm, and gastric neoplasm, and 100%, 86%, 88% of the top 50 potential miRNAs were validated by authoritative databases. In conclusion, MDA-CF appears to be a reliable method to uncover disease-associated miRNAs. The source code of MDA-CF is available at https://github.com/a1622108/MDA-CF.
Collapse
Affiliation(s)
- Qiuying Dai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanyi Chu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiqi Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yusong Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueying Mao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanjing Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China; Peng Cheng Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nanshan District, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
15
|
Li A, Deng Y, Tan Y, Chen M. A novel miRNA-disease association prediction model using dual random walk with restart and space projection federated method. PLoS One 2021; 16:e0252971. [PMID: 34138933 PMCID: PMC8211179 DOI: 10.1371/journal.pone.0252971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022] Open
Abstract
A large number of studies have shown that the variation and disorder of miRNAs are important causes of diseases. The recognition of disease-related miRNAs has become an important topic in the field of biological research. However, the identification of disease-related miRNAs by biological experiments is expensive and time consuming. Thus, computational prediction models that predict disease-related miRNAs must be developed. A novel network projection-based dual random walk with restart (NPRWR) was used to predict potential disease-related miRNAs. The NPRWR model aims to estimate and accurately predict miRNA-disease associations by using dual random walk with restart and network projection technology, respectively. The leave-one-out cross validation (LOOCV) was adopted to evaluate the prediction performance of NPRWR. The results show that the area under the receiver operating characteristic curve(AUC) of NPRWR was 0.9029, which is superior to that of other advanced miRNA-disease associated prediction methods. In addition, lung and kidney neoplasms were selected to present a case study. Among the first 50 miRNAs predicted, 50 and 49 miRNAs have been proven by in databases or relevant literature. Moreover, NPRWR can be used to predict isolated diseases and new miRNAs. LOOCV and the case study achieved good prediction results. Thus, NPRWR will become an effective and accurate disease-miRNA association prediction model.
Collapse
Affiliation(s)
- Ang Li
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| | - Yingwei Deng
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
- Hainan Key Laboratory for Computational Science and Application, Haikou, China
| | - Yan Tan
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| | - Min Chen
- Hunan Institute of Technology, School of Computer Science and Technology, Hengyang, China
| |
Collapse
|
16
|
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021; 22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate identification of the miRNA-disease associations (MDAs) helps to understand the etiology and mechanisms of various diseases. However, the experimental methods are costly and time-consuming. Thus, it is urgent to develop computational methods towards the prediction of MDAs. Based on the graph theory, the MDA prediction is regarded as a node classification task in the present study. To solve this task, we propose a novel method MDA-GCNFTG, which predicts MDAs based on Graph Convolutional Networks (GCNs) via graph sampling through the Feature and Topology Graph to improve the training efficiency and accuracy. This method models both the potential connections of feature space and the structural relationships of MDA data. The nodes of the graphs are represented by the disease semantic similarity, miRNA functional similarity and Gaussian interaction profile kernel similarity. Moreover, we considered six tasks simultaneously on the MDA prediction problem at the first time, which ensure that under both balanced and unbalanced sample distribution, MDA-GCNFTG can predict not only new MDAs but also new diseases without known related miRNAs and new miRNAs without known related diseases. The results of 5-fold cross-validation show that the MDA-GCNFTG method has achieved satisfactory performance on all six tasks and is significantly superior to the classic machine learning methods and the state-of-the-art MDA prediction methods. Moreover, the effectiveness of GCNs via the graph sampling strategy and the feature and topology graph in MDA-GCNFTG has also been demonstrated. More importantly, case studies for two diseases and three miRNAs are conducted and achieved satisfactory performance.
Collapse
Affiliation(s)
- Yanyi Chu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Xuhong Wang
- School of Electronic, Information and Electrical Engineering (SEIEE), Shanghai Jiao Tong University, China
| | - Qiuying Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Yanjing Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Qiankun Wang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, China
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, China
| | | | | | - Dennis Russell Salahub
- Department of Chemistry, University of Calgary, Fellow Royal Society of Canada and Fellow of the American Association for the Advancement of Science, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| |
Collapse
|