1
|
Chang HP, Le HK, Shah DK. Pharmacokinetics and Pharmacodynamics of Antibody-Drug Conjugates Administered via Subcutaneous and Intratumoral Routes. Pharmaceutics 2023; 15:pharmaceutics15041132. [PMID: 37111619 PMCID: PMC10142912 DOI: 10.3390/pharmaceutics15041132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
We hypothesize that different routes of administration may lead to altered pharmacokinetics/pharmacodynamics (PK/PD) behavior of antibody-drug conjugates (ADCs) and may help to improve their therapeutic index. To evaluate this hypothesis, here we performed PK/PD evaluation for an ADC administered via subcutaneous (SC) and intratumoral (IT) routes. Trastuzumab-vc-MMAE was used as the model ADC, and NCI-N87 tumor-bearing xenografts were used as the animal model. The PK of multiple ADC analytes in plasma and tumors, and the in vivo efficacy of ADC, after IV, SC, and IT administration were evaluated. A semi-mechanistic PK/PD model was developed to characterize all the PK/PD data simultaneously. In addition, local toxicity of SC-administered ADC was investigated in immunocompetent and immunodeficient mice. Intratumoral administration was found to significantly increase tumor exposure and anti-tumor activity of ADC. The PK/PD model suggested that the IT route may provide the same efficacy as the IV route at an increased dosing interval and reduced dose level. SC administration of ADC led to local toxicity and reduced efficacy, suggesting difficulty in switching from IV to SC route for some ADCs. As such, this manuscript provides unprecedented insight into the PK/PD behavior of ADCs after IT and SC administration and paves the way for clinical evaluation of these routes.
Collapse
Affiliation(s)
- Hsuan-Ping Chang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14241, USA
| | - Huyen Khanh Le
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14241, USA
| | - Dhaval K. Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, Buffalo, NY 14241, USA
| |
Collapse
|
2
|
Altay G, Abad‐Lázaro A, Gualda EJ, Folch J, Insa C, Tosi S, Hernando‐Momblona X, Batlle E, Loza‐Álvarez P, Fernández‐Majada V, Martinez E. Modeling Biochemical Gradients In Vitro to Control Cell Compartmentalization in a Microengineered 3D Model of the Intestinal Epithelium. Adv Healthc Mater 2022; 11:e2201172. [PMID: 36073021 PMCID: PMC11468757 DOI: 10.1002/adhm.202201172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/29/2022] [Indexed: 01/28/2023]
Abstract
Gradients of signaling pathways within the intestinal stem cell (ISC) niche are instrumental for cellular compartmentalization and tissue function, yet how are they sensed by the epithelium is still not fully understood. Here a new in vitro model of the small intestine based on primary epithelial cells (i), apically accessible (ii), with native tissue mechanical properties and controlled mesh size (iii), 3D villus-like architecture (iv), and precisely controlled biomolecular gradients of the ISC niche (v) is presented. Biochemical gradients are formed through hydrogel-based scaffolds by free diffusion from a source to a sink chamber. To confirm the establishment of spatiotemporally controlled gradients, light-sheet fluorescence microscopy and in-silico modeling are employed. The ISC niche biochemical gradients coming from the stroma and applied along the villus axis lead to the in vivo-like compartmentalization of the proliferative and differentiated cells, while changing the composition and concentration of the biochemical factors affects the cellular organization along the villus axis. This novel 3D in vitro intestinal model derived from organoids recapitulates both the villus-like architecture and the gradients of ISC biochemical factors, thus opening the possibility to study in vitro the nature of such gradients and the resulting cellular response.
Collapse
Affiliation(s)
- Gizem Altay
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
- Institut de l'AuditionInstitut PasteurINSERMUniversité de ParisParis75012France
| | - Aina Abad‐Lázaro
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Emilio J. Gualda
- SLN Research FacilityInstitute of Photonic Sciences (ICFO)Mediterranean Technology ParkAv. Carl Friedrich Gauss 3 CastelldefelsBarcelona08860Spain
| | - Jordi Folch
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Claudia Insa
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Sébastien Tosi
- Advanced Digital Microscopy Core Facility (ADMCF)Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
| | - Xavier Hernando‐Momblona
- Colorectal Cancer LaboratoryInstitute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Barcelona08028Spain
| | - Eduard Batlle
- Colorectal Cancer LaboratoryInstitute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 10‐12Barcelona08028Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)Barcelona08028Spain
- ICREAPasseig Lluís Companys 23Barcelona08010Spain
| | - Pablo Loza‐Álvarez
- SLN Research FacilityInstitute of Photonic Sciences (ICFO)Mediterranean Technology ParkAv. Carl Friedrich Gauss 3 CastelldefelsBarcelona08860Spain
| | - Vanesa Fernández‐Majada
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
| | - Elena Martinez
- Biomimetic Systems for Cell Engineering LaboratoryInstitute for Bioengineering of Catalonia (IBEC)Barcelona Institute of Science and Technology (BIST)Baldiri i Reixac 15‐21Barcelona08028Spain
- Centro de Investigación Biomédica en Red de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)Av. Monforte de Lemos 3‐5 Pabellón 11 Planta 0Madrid28029Spain
- Department of Electronics and Biomedical EngineeringUniversity of Barcelona (UB)Martí i Franquès 1Barcelona08028Spain
| |
Collapse
|
3
|
Dong S, Nessler I, Kopp A, Rubahamya B, Thurber GM. Predictive Simulations in Preclinical Oncology to Guide the Translation of Biologics. Front Pharmacol 2022; 13:836925. [PMID: 35308243 PMCID: PMC8927291 DOI: 10.3389/fphar.2022.836925] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Preclinical in vivo studies form the cornerstone of drug development and translation, bridging in vitro experiments with first-in-human trials. However, despite the utility of animal models, translation from the bench to bedside remains difficult, particularly for biologics and agents with unique mechanisms of action. The limitations of these animal models may advance agents that are ineffective in the clinic, or worse, screen out compounds that would be successful drugs. One reason for such failure is that animal models often allow clinically intolerable doses, which can undermine translation from otherwise promising efficacy studies. Other times, tolerability makes it challenging to identify the necessary dose range for clinical testing. With the ability to predict pharmacokinetic and pharmacodynamic responses, mechanistic simulations can help advance candidates from in vitro to in vivo and clinical studies. Here, we use basic insights into drug disposition to analyze the dosing of antibody drug conjugates (ADC) and checkpoint inhibitor dosing (PD-1 and PD-L1) in the clinic. The results demonstrate how simulations can identify the most promising clinical compounds rather than the most effective in vitro and preclinical in vivo agents. Likewise, the importance of quantifying absolute target expression and antibody internalization is critical to accurately scale dosing. These predictive models are capable of simulating clinical scenarios and providing results that can be validated and updated along the entire development pipeline starting in drug discovery. Combined with experimental approaches, simulations can guide the selection of compounds at early stages that are predicted to have the highest efficacy in the clinic.
Collapse
Affiliation(s)
- Shujun Dong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Ian Nessler
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Anna Kopp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Baron Rubahamya
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Greg M. Thurber
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Greg M. Thurber,
| |
Collapse
|
4
|
Modular multimodal platform for classical and high throughput light sheet microscopy. Sci Rep 2022; 12:1969. [PMID: 35121789 PMCID: PMC8817037 DOI: 10.1038/s41598-022-05940-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Light-sheet fluorescence microscopy (LSFM) has become an important tool for biological and biomedical research. Although several illumination and detection strategies have been developed, the sample mounting still represents a cumbersome procedure as this is highly dependent on the type of sample and often this might be time consuming. This prevents the use of LSFM in other promising applications in which a fast and straightforward sample-mounting procedure and imaging are essential. These include the high-throughput research fields, e.g. in drug screenings and toxicology studies. Here we present a new imaging paradigm for LSFM, which exploits modularity to offer multimodal imaging and straightforward sample mounting strategy, enhancing the flexibility and throughput of the system. We describe its implementation in which the sample can be imaged either as in any classical configuration, as it flows through the light-sheet using a fluidic approach, or a combination of both. We also evaluate its ability to image a variety of samples, from zebrafish embryos and larvae to 3D complex cell cultures.
Collapse
|
5
|
Al Ojaimi Y, Blin T, Lamamy J, Gracia M, Pitiot A, Denevault-Sabourin C, Joubert N, Pouget JP, Gouilleux-Gruart V, Heuzé-Vourc'h N, Lanznaster D, Poty S, Sécher T. Therapeutic antibodies - natural and pathological barriers and strategies to overcome them. Pharmacol Ther 2021; 233:108022. [PMID: 34687769 PMCID: PMC8527648 DOI: 10.1016/j.pharmthera.2021.108022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023]
Abstract
Antibody-based therapeutics have become a major class of therapeutics with over 120 recombinant antibodies approved or under review in the EU or US. This therapeutic class has experienced a remarkable expansion with an expected acceleration in 2021-2022 due to the extraordinary global response to SARS-CoV2 pandemic and the public disclosure of over a hundred anti-SARS-CoV2 antibodies. Mainly delivered intravenously, alternative delivery routes have emerged to improve antibody therapeutic index and patient comfort. A major hurdle for antibody delivery and efficacy as well as the development of alternative administration routes, is to understand the different natural and pathological barriers that antibodies face as soon as they enter the body up to the moment they bind to their target antigen. In this review, we discuss the well-known and more under-investigated extracellular and cellular barriers faced by antibodies. We also discuss some of the strategies developed in the recent years to overcome these barriers and increase antibody delivery to its site of action. A better understanding of the biological barriers that antibodies have to face will allow the optimization of antibody delivery near its target. This opens the way to the development of improved therapy with less systemic side effects and increased patients' adherence to the treatment.
Collapse
Affiliation(s)
- Yara Al Ojaimi
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Timothée Blin
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | - Juliette Lamamy
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Matthieu Gracia
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Aubin Pitiot
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| | | | - Nicolas Joubert
- University of Tours, 37000 Tours, France; GICC, EA7501, 37000 Tours, France
| | - Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | | | | | - Débora Lanznaster
- UMR 1253, iBrain, Inserm, 37000 Tours, France; University of Tours, 37000 Tours, France
| | - Sophie Poty
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier F-34298, France
| | - Thomas Sécher
- University of Tours, 37000 Tours, France; UMR 1100, CEPR, Inserm, 37000 Tours, France
| |
Collapse
|