1
|
Gu Y, Li J, Guan H, Sun C. Prognostic and immunological values of SKA3 for overall survival in lung adenocarcinoma and its RNA binding protein involved mechanisms. J Chemother 2024; 36:566-579. [PMID: 38146901 DOI: 10.1080/1120009x.2023.2298153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/18/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023]
Abstract
This article aimed to investigate the correlations among SKA3 expression and prognosis, clinical relevance, tumor immunity, and RNA-binding protein (RBP)-involved mechanisms for overall survival (OS) in lung adenocarcinoma (LUAD). To explore the SKA3 expression level in LUAD by analyzing the genomic data as well as related clinical characteristics from the database of TCGA. Nomogram and gene set enrichment analysis (GSEA) were applied, respectively, to evaluate the performance of SKA3 in LUAD. Correlations between SKA3 and immunity and RBP-involved mechanisms were also performed. SKA3 had a higher expression level in LUAD samples than in adjacent normal lung samples, with shorter survival times in the high-SKA3-expressed LUAD subgroup (P < 0.05). qRT-PCR results remained consistent (P < 0.05). Uni-/multivariate Cox analyses revealed that SKA3 could have independent prognostic ability for LUAD (both P < 0.05). The nomogram model constructed with clinical pathological parameters and SKA3 expression levels predicted OS rates for LUAD and GSEA revealed SKA3-related pathways. In aspects of tumor immunity, SKA3 was significantly involved with tumor neoantigen burden, tumor mutational burden, immune cell pathways, and immune checkpoint inhibitor (ICI) molecules (all P < 0.05). The CellMiner database also found significant correlations between SKA3 and the antitumor drug sensitivity of chemotherapy, fenretinide, and PX-316. Besides, a total of nine LncRNA/RBP/SKA3 networks were revealed in LUAD for their RBP-involved mechanisms. SKA3 could serve as a potential biomarker for OS prognosis and immunotherapy in LUAD. LncRNA/RBP/SKA3 networks were identified in LUAD for their RBP-involved mechanisms, paving the way for further experimental verifications.
Collapse
Affiliation(s)
- Yinfeng Gu
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
- Department of Thoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jinjin Li
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Hongjun Guan
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| | - Changpeng Sun
- Department of Thoracic Surgery, Jianhu People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
2
|
Ye C, Wu Q, Chen S, Zhang X, Xu W, Wu Y, Zhang Y, Yue Y. ECDEP: identifying essential proteins based on evolutionary community discovery and subcellular localization. BMC Genomics 2024; 25:117. [PMID: 38279081 PMCID: PMC10821549 DOI: 10.1186/s12864-024-10019-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND In cellular activities, essential proteins play a vital role and are instrumental in comprehending fundamental biological necessities and identifying pathogenic genes. Current deep learning approaches for predicting essential proteins underutilize the potential of gene expression data and are inadequate for the exploration of dynamic networks with limited evaluation across diverse species. RESULTS We introduce ECDEP, an essential protein identification model based on evolutionary community discovery. ECDEP integrates temporal gene expression data with a protein-protein interaction (PPI) network and employs the 3-Sigma rule to eliminate outliers at each time point, constructing a dynamic network. Next, we utilize edge birth and death information to establish an interaction streaming source to feed into the evolutionary community discovery algorithm and then identify overlapping communities during the evolution of the dynamic network. SVM recursive feature elimination (RFE) is applied to extract the most informative communities, which are combined with subcellular localization data for classification predictions. We assess the performance of ECDEP by comparing it against ten centrality methods, four shallow machine learning methods with RFE, and two deep learning methods that incorporate multiple biological data sources on Saccharomyces. Cerevisiae (S. cerevisiae), Homo sapiens (H. sapiens), Mus musculus, and Caenorhabditis elegans. ECDEP achieves an AP value of 0.86 on the H. sapiens dataset and the contribution ratio of community features in classification reaches 0.54 on the S. cerevisiae (Krogan) dataset. CONCLUSIONS Our proposed method adeptly integrates network dynamics and yields outstanding results across various datasets. Furthermore, the incorporation of evolutionary community discovery algorithms amplifies the capacity of gene expression data in classification.
Collapse
Affiliation(s)
- Chen Ye
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Qi Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Shuxia Chen
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Xuemei Zhang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Wenwen Xu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yunzhi Wu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Youhua Zhang
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China
| | - Yi Yue
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui, 230036, China.
- Anhui Beidou Precision Agriculture Information Engineering Research Center, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
3
|
Yue Y, Ye C, Peng PY, Zhai HX, Ahmad I, Xia C, Wu YZ, Zhang YH. A deep learning framework for identifying essential proteins based on multiple biological information. BMC Bioinformatics 2022; 23:318. [PMID: 35927611 PMCID: PMC9351218 DOI: 10.1186/s12859-022-04868-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
Background Essential Proteins are demonstrated to exert vital functions on cellular processes and are indispensable for the survival and reproduction of the organism. Traditional centrality methods perform poorly on complex protein–protein interaction (PPI) networks. Machine learning approaches based on high-throughput data lack the exploitation of the temporal and spatial dimensions of biological information. Results We put forward a deep learning framework to predict essential proteins by integrating features obtained from the PPI network, subcellular localization, and gene expression profiles. In our model, the node2vec method is applied to learn continuous feature representations for proteins in the PPI network, which capture the diversity of connectivity patterns in the network. The concept of depthwise separable convolution is employed on gene expression profiles to extract properties and observe the trends of gene expression over time under different experimental conditions. Subcellular localization information is mapped into a long one-dimensional vector to capture its characteristics. Additionally, we use a sampling method to mitigate the impact of imbalanced learning when training the model. With experiments carried out on the data of Saccharomyces cerevisiae, results show that our model outperforms traditional centrality methods and machine learning methods. Likewise, the comparative experiments have manifested that our process of various biological information is preferable. Conclusions Our proposed deep learning framework effectively identifies essential proteins by integrating multiple biological data, proving a broader selection of subcellular localization information significantly improves the results of prediction and depthwise separable convolution implemented on gene expression profiles enhances the performance.
Collapse
Affiliation(s)
- Yi Yue
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China. .,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China. .,School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China. .,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China.
| | - Chen Ye
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Pei-Yun Peng
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Hui-Xin Zhai
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Iftikhar Ahmad
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Chuan Xia
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China
| | - Yun-Zhi Wu
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China.,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China.,State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - You-Hua Zhang
- Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, 230036, China. .,School of Information and Computer, Anhui Agricultural University, Hefei, 230036, China. .,School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|