1
|
Chee FT, Harun S, Mohd Daud K, Sulaiman S, Nor Muhammad NA. Exploring gene regulation and biological processes in insects: Insights from omics data using gene regulatory network models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 189:1-12. [PMID: 38604435 DOI: 10.1016/j.pbiomolbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
Gene regulatory network (GRN) comprises complicated yet intertwined gene-regulator relationships. Understanding the GRN dynamics will unravel the complexity behind the observed gene expressions. Insect gene regulation is often complicated due to their complex life cycles and diverse ecological adaptations. The main interest of this review is to have an update on the current mathematical modelling methods of GRNs to explain insect science. Several popular GRN architecture models are discussed, together with examples of applications in insect science. In the last part of this review, each model is compared from different aspects, including network scalability, computation complexity, robustness to noise and biological relevancy.
Collapse
Affiliation(s)
- Fong Ting Chee
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Sarahani Harun
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Kauthar Mohd Daud
- Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Suhaila Sulaiman
- FGV R&D Sdn Bhd, FGV Innovation Center, PT23417 Lengkuk Teknologi, Bandar Baru Enstek, 71760 Nilai, Negeri Sembilan, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
2
|
Xin J, Wang M, Qu L, Chen Q, Wang W, Wang Z. BIC-LP: A Hybrid Higher-Order Dynamic Bayesian Network Score Function for Gene Regulatory Network Reconstruction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:188-199. [PMID: 38127613 DOI: 10.1109/tcbb.2023.3345317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Reconstructing gene regulatory networks(GRNs) is an increasingly hot topic in bioinformatics. Dynamic Bayesian network(DBN) is a stochastic graph model commonly used as a vital model for GRN reconstruction. But probabilistic characteristics of biological networks and the existence of data noise bring great challenges to GRN reconstruction and always lead to many false positive/negative edges. ScoreLasso is a hybrid DBN score function combining DBN and linear regression with good performance. Its performance is, however, limited by first-order assumption and ignorance of the initial network of DBN. In this article, an integrated model based on higher-order DBN model, higher-order Lasso linear regression model and Pearson correlation model is proposed. Based on this, a hybrid higher-order DBN score function for GRN reconstruction is proposed, namely BIC-LP. BIC-LP score function is constructed by adding terms based on Lasso linear regression coefficients and Pearson correlation coefficients on classical BIC score function. Therefore, it could capture more information from dataset and curb information loss, compared with both many existing Bayesian family score functions and many state-of-the-art methods for GRN reconstruction. Experimental results show that BIC-LP can reasonably eliminate some false positive edges while retaining most true positive edges, so as to achieve better GRN reconstruction performance.
Collapse
|
3
|
Gao Z, Tang J, Xia J, Zheng CH, Wei PJ. CNNGRN: A Convolutional Neural Network-Based Method for Gene Regulatory Network Inference From Bulk Time-Series Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2853-2861. [PMID: 37267145 DOI: 10.1109/tcbb.2023.3282212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gene regulatory networks (GRNs) participate in many biological processes, and reconstructing them plays an important role in systems biology. Although many advanced methods have been proposed for GRN reconstruction, their predictive performance is far from the ideal standard, so it is urgent to design a more effective method to reconstruct GRN. Moreover, most methods only consider the gene expression data, ignoring the network structure information contained in GRN. In this study, we propose a supervised model named CNNGRN, which infers GRN from bulk time-series expression data via convolutional neural network (CNN) model, with a more informative feature. Bulk time series gene expression data imply the intricate regulatory associations between genes, and the network structure feature of ground-truth GRN contains rich neighbor information. Hence, CNNGRN integrates the above two features as model inputs. In addition, CNN is adopted to extract intricate features of genes and infer the potential associations between regulators and target genes. Moreover, feature importance visualization experiments are implemented to seek the key features. Experimental results show that CNNGRN achieved competitive performance on benchmark datasets compared to the state-of-the-art computational methods. Finally, hub genes identified based on CNNGRN have been confirmed to be involved in biological processes through literature.
Collapse
|
4
|
Zito F, Cutello V, Pavone M. A Machine Learning Approach to Simulate Gene Expression and Infer Gene Regulatory Networks. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1214. [PMID: 37628244 PMCID: PMC10453511 DOI: 10.3390/e25081214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
The ability to simulate gene expression and infer gene regulatory networks has vast potential applications in various fields, including medicine, agriculture, and environmental science. In recent years, machine learning approaches to simulate gene expression and infer gene regulatory networks have gained significant attention as a promising area of research. By simulating gene expression, we can gain insights into the complex mechanisms that control gene expression and how they are affected by various environmental factors. This knowledge can be used to develop new treatments for genetic diseases, improve crop yields, and better understand the evolution of species. In this article, we address this issue by focusing on a novel method capable of simulating the gene expression regulation of a group of genes and their mutual interactions. Our framework enables us to simulate the regulation of gene expression in response to alterations or perturbations that can affect the expression of a gene. We use both artificial and real benchmarks to empirically evaluate the effectiveness of our methodology. Furthermore, we compare our method with existing ones to understand its advantages and disadvantages. We also present future ideas for improvement to enhance the effectiveness of our method. Overall, our approach has the potential to greatly improve the field of gene expression simulation and gene regulatory network inference, possibly leading to significant advancements in genetics.
Collapse
Affiliation(s)
| | | | - Mario Pavone
- Department of Mathematics and Computer Science, University of Catania, 95125 Catania, Italy
| |
Collapse
|
5
|
Jia Z, Zhang X. Accurate determination of causalities in gene regulatory networks by dissecting downstream target genes. Front Genet 2022; 13:923339. [PMID: 36568360 PMCID: PMC9768335 DOI: 10.3389/fgene.2022.923339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
Accurate determination of causalities between genes is a challenge in the inference of gene regulatory networks (GRNs) from the gene expression profile. Although many methods have been developed for the reconstruction of GRNs, most of them are insufficient in determining causalities or regulatory directions. In this work, we present a novel method, namely, DDTG, to improve the accuracy of causality determination in GRN inference by dissecting downstream target genes. In the proposed method, the topology and hierarchy of GRNs are determined by mutual information and conditional mutual information, and the regulatory directions of GRNs are determined by Taylor formula-based regression. In addition, indirect interactions are removed with the sparseness of the network topology to improve the accuracy of network inference. The method is validated on the benchmark GRNs from DREAM3 and DREAM4 challenges. The results demonstrate the superior performance of the DDTG method on causality determination of GRNs compared to some popular GRN inference methods. This work provides a useful tool to infer the causal gene regulatory network.
Collapse
Affiliation(s)
- Zhigang Jia
- School of Mathematics and Statistics, Xinyang Normal University, Xinyang, China,Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China,Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China,*Correspondence: Xiujun Zhang,
| |
Collapse
|
6
|
Cordier BA, Sawaya NPD, Guerreschi GG, McWeeney SK. Biology and medicine in the landscape of quantum advantages. J R Soc Interface 2022; 19:20220541. [PMID: 36448288 PMCID: PMC9709576 DOI: 10.1098/rsif.2022.0541] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/04/2022] [Indexed: 12/03/2022] Open
Abstract
Quantum computing holds substantial potential for applications in biology and medicine, spanning from the simulation of biomolecules to machine learning methods for subtyping cancers on the basis of clinical features. This potential is encapsulated by the concept of a quantum advantage, which is contingent on a reduction in the consumption of a computational resource, such as time, space or data. Here, we distill the concept of a quantum advantage into a simple framework to aid researchers in biology and medicine pursuing the development of quantum applications. We then apply this framework to a wide variety of computational problems relevant to these domains in an effort to (i) assess the potential of practical advantages in specific application areas and (ii) identify gaps that may be addressed with novel quantum approaches. In doing so, we provide an extensive survey of the intersection of biology and medicine with the current landscape of quantum algorithms and their potential advantages. While we endeavour to identify specific computational problems that may admit practical advantages throughout this work, the rapid pace of change in the fields of quantum computing, classical algorithms and biological research implies that this intersection will remain highly dynamic for the foreseeable future.
Collapse
Affiliation(s)
- Benjamin A. Cordier
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97202, USA
| | | | | | - Shannon K. McWeeney
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97202, USA
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97202, USA
- Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR 97202, USA
| |
Collapse
|