1
|
Brandenburg JT, Chen WC, Boua PR, Govender MA, Agongo G, Micklesfield LK, Sorgho H, Tollman S, Asiki G, Mashinya F, Hazelhurst S, Morris AP, Fabian J, Ramsay M. Genetic association and transferability for urinary albumin-creatinine ratio as a marker of kidney disease in four Sub-Saharan African populations and non-continental individuals of African ancestry. Front Genet 2024; 15:1372042. [PMID: 38812969 PMCID: PMC11134365 DOI: 10.3389/fgene.2024.1372042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 05/31/2024] Open
Abstract
Background Genome-wide association studies (GWAS) have predominantly focused on populations of European and Asian ancestry, limiting our understanding of genetic factors influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 8,970 participants living in different African regions and an additional 9,705 non-resident individuals of African ancestry from the UK Biobank and African American cohorts. Methods Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. Results Two genome-wide significant (P < 5 × 10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. Conclusion This study contributes novel insights into the genetic architecture of kidney disease in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations Additionally, there is a need to develop integrated scores using multi-omics data and risk factors specific to the African context to improve the accuracy of predicting disease outcomes.
Collapse
Affiliation(s)
- Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Wenlong Carl Chen
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- National Cancer Registry, National Health Laboratory Service, Johannesburg, South Africa
| | - Palwende Romuald Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | | | - Godfred Agongo
- Navrongo Health Research Centre, Navrongo, Ghana
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Lisa K. Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Stephen Tollman
- Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gershim Asiki
- African Population and Health Research Center, Nairobi, Kenya
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| | - Felistas Mashinya
- Department of Pathology and Medical Sciences, School of Healthcare Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew P. Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, United Kingdom
| | - June Fabian
- Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Brandenburg JT, Chen WC, Boua PR, Govender MA, Agongo G, Micklesfield LK, Sorgho H, Tollman S, Asiki G, Mashinya F, Hazelhurst S, Morris AP, Fabian J, Ramsay M. Genetic Association and Transferability for Urinary Albumin-Creatinine Ratio as a Marker of Kidney Disease in four Sub-Saharan African Populations and non-continental Individuals of African Ancestry. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.17.24301398. [PMID: 38293229 PMCID: PMC10827237 DOI: 10.1101/2024.01.17.24301398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND Genome-wide association studies (GWAS) have predominantly focused on populations of European and Asian ancestry, limiting our understanding of genetic factors influencing kidney disease in Sub-Saharan African (SSA) populations. This study presents the largest GWAS for urinary albumin-to-creatinine ratio (UACR) in SSA individuals, including 8,970 participants living in different African regions and an additional 9,705 non-resident individuals of African ancestry from the UK Biobank and African American cohorts. METHODS Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION This study contributes novel insights into the genetic architecture of kidney disease in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations Additionally, there is a need to develop integrated scores using multi-omics data and risk factors specific to the African context to improve the accuracy of predicting disease outcomes. METHODS Urine biomarkers and genotype data were obtained from two SSA cohorts (AWI-Gen and ARK), and two non-resident African-ancestry studies (UK Biobank and CKD-Gen Consortium). Association testing and meta-analyses were conducted, with subsequent fine-mapping, conditional analyses, and replication studies. Polygenic scores (PGS) were assessed for transferability across populations. RESULTS Two genome-wide significant (P<5x10-8) UACR-associated loci were identified, one in the BMP6 region on chromosome 6, in the meta-analysis of resident African individuals, and another in the HBB region on chromosome 11 in the meta-analysis of non-resident SSA individuals, as well as the combined meta-analysis of all studies. Replication of previous significant results confirmed associations in known UACR-associated regions, including THB53, GATM, and ARL15. PGS estimated using previous studies from European ancestry, African ancestry, and multi-ancestry cohorts exhibited limited transferability of PGS across populations, with less than 1% of observed variance explained. CONCLUSION This study contributes novel insights into the genetic architecture of kidney function in SSA populations, emphasizing the need for conducting genetic research in diverse cohorts. The identified loci provide a foundation for future investigations into the genetic susceptibility to chronic kidney disease in underrepresented African populations.
Collapse
|
3
|
Schönherr S, Schachtl-Riess JF, Di Maio S, Filosi M, Mark M, Lamina C, Fuchsberger C, Kronenberg F, Forer L. Performing highly parallelized and reproducible GWAS analysis on biobank-scale data. NAR Genom Bioinform 2024; 6:lqae015. [PMID: 38327871 PMCID: PMC10849172 DOI: 10.1093/nargab/lqae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
Genome-wide association studies (GWAS) are transforming genetic research and enable the detection of novel genotype-phenotype relationships. In the last two decades, over 60 000 genetic associations across thousands of traits have been discovered using a GWAS approach. Due to increasing sample sizes, researchers are increasingly faced with computational challenges. A reproducible, modular and extensible pipeline with a focus on parallelization is essential to simplify data analysis and to allow researchers to devote their time to other essential tasks. Here we present nf-gwas, a Nextflow pipeline to run biobank-scale GWAS analysis. The pipeline automatically performs numerous pre- and post-processing steps, integrates regression modeling from the REGENIE package and supports single-variant, gene-based and interaction testing. It includes an extensive reporting functionality that allows to inspect thousands of phenotypes and navigate interactive Manhattan plots directly in the web browser. The pipeline is tested using the unit-style testing framework nf-test, a crucial requirement in clinical and pharmaceutical settings. Furthermore, we validated the pipeline against published GWAS datasets and benchmarked the pipeline on high-performance computing and cloud infrastructures to provide cost estimations to end users. nf-gwas is a highly parallelized, scalable and well-tested Nextflow pipeline to perform GWAS analysis in a reproducible manner.
Collapse
Affiliation(s)
- Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. Institutional Address: Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | - Johanna F Schachtl-Riess
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. Institutional Address: Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. Institutional Address: Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | - Michele Filosi
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy. Institutional Address: Via Alessandro Volta, 21, 39100 Bolzano BZ, Italy
| | - Marvin Mark
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. Institutional Address: Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. Institutional Address: Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | - Christian Fuchsberger
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. Institutional Address: Schoepfstrasse 41, A-6020 Innsbruck, Austria
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy. Institutional Address: Via Alessandro Volta, 21, 39100 Bolzano BZ, Italy
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. Institutional Address: Schoepfstrasse 41, A-6020 Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria. Institutional Address: Schoepfstrasse 41, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Singh S, Choudhury A, Hazelhurst S, Crowther NJ, Boua PR, Sorgho H, Agongo G, Nonterah EA, Micklesfield LK, Norris SA, Kisiangani I, Mohamed S, Gómez-Olivé FX, Tollman SM, Choma S, Brandenburg JT, Ramsay M. Genome-wide association study meta-analysis of blood pressure traits and hypertension in sub-Saharan African populations: an AWI-Gen study. Nat Commun 2023; 14:8376. [PMID: 38104120 PMCID: PMC10725455 DOI: 10.1038/s41467-023-44079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Most hypertension-related genome-wide association studies (GWASs) focus on non-African populations, despite hypertension (a major risk factor for cardiovascular disease) being highly prevalent in Africa. The AWI-Gen study GWAS meta-analysis for blood pressure (BP)-related traits (systolic and diastolic BP, pulse pressure, mean-arterial pressure and hypertension) from three sub-Saharan African geographic regions (N = 10,775), identifies two novel genome-wide significant signals (p < 5E-08): systolic BP near P2RY1 (rs77846204; intergenic variant, p = 4.95E-08) and pulse pressure near LINC01256 (rs80141533; intergenic variant, p = 1.76E-08). No genome-wide signals are detected for the AWI-Gen GWAS meta-analysis with previous African-ancestry GWASs (UK Biobank (African), Uganda Genome Resource). Suggestive signals (p < 5E-06) are observed for all traits, with 29 SNPs associating with more than one trait and several replicating known associations. Polygenic risk scores (PRSs) developed from studies on different ancestries have limited transferability, with multi-ancestry PRS providing better prediction. This study provides insights into the genetics of BP variation in African populations.
Collapse
Affiliation(s)
- Surina Singh
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical and Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | - Nigel J Crowther
- Department of Chemical Pathology, National Health Laboratory Service, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Sante, Ouagadougou, Burkina Faso
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Sante, Ouagadougou, Burkina Faso
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C.K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Engelbert A Nonterah
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
- Julius Global Health, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lisa K Micklesfield
- SAMRC Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shane A Norris
- SAMRC Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Health and Human Development, University of Southampton, Southampton, UK
| | | | - Shukri Mohamed
- African Population and Health Research Center, Nairobi, Kenya
| | - Francesc X Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Stephen M Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Solomon Choma
- Department of Medical Science, Public Health and Health Promotion, School of Health Care Sciences, Faculty of Health Sciences, University of Limpopo, Polokwane, South Africa
| | - J-T Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Strengthening Oncology Services, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
5
|
Soo CC, Brandenburg JT, Nebel A, Tollman S, Berkman L, Ramsay M, Choudhury A. Genome-wide association study of population-standardised cognitive performance phenotypes in a rural South African community. Commun Biol 2023; 6:328. [PMID: 36973338 PMCID: PMC10043003 DOI: 10.1038/s42003-023-04636-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
Cognitive function is an indicator for global physical and mental health, and cognitive impairment has been associated with poorer life outcomes and earlier mortality. A standard cognition test, adapted to a rural-dwelling African community, and the Oxford Cognition Screen-Plus were used to capture cognitive performance as five continuous traits (total cognition score, verbal episodic memory, executive function, language, and visuospatial ability) for 2,246 adults in this population of South Africans. A novel common variant, rs73485231, reached genome-wide significance for association with episodic memory using data for ~14 million markers imputed from the H3Africa genotyping array data. Window-based replication of previously implicated variants and regions of interest support the discovery of African-specific associated variants despite the small population size and low allele frequency. This African genome-wide association study identifies suggestive associations with general cognition and domain-specific cognitive pathways and lays the groundwork for further genomic studies on cognition in Africa.
Collapse
Affiliation(s)
- Cassandra C Soo
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Almut Nebel
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lisa Berkman
- MRC/Wits Rural Public Health and Health Transitions Research Unit, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Center for Population and Development Studies, Harvard University, Cambridge, MA, USA
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ananyo Choudhury
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|