1
|
Chen YM, Hsiao TH, Lin CH, Fann YC. Unlocking precision medicine: clinical applications of integrating health records, genetics, and immunology through artificial intelligence. J Biomed Sci 2025; 32:16. [PMID: 39915780 PMCID: PMC11804102 DOI: 10.1186/s12929-024-01110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/02/2024] [Indexed: 02/09/2025] Open
Abstract
Artificial intelligence (AI) has emerged as a transformative force in precision medicine, revolutionizing the integration and analysis of health records, genetics, and immunology data. This comprehensive review explores the clinical applications of AI-driven analytics in unlocking personalized insights for patients with autoimmune rheumatic diseases. Through the synergistic approach of integrating AI across diverse data sets, clinicians gain a holistic view of patient health and potential risks. Machine learning models excel at identifying high-risk patients, predicting disease activity, and optimizing therapeutic strategies based on clinical, genomic, and immunological profiles. Deep learning techniques have significantly advanced variant calling, pathogenicity prediction, splicing analysis, and MHC-peptide binding predictions in genetics. AI-enabled immunology data analysis, including dimensionality reduction, cell population identification, and sample classification, provides unprecedented insights into complex immune responses. The review highlights real-world examples of AI-driven precision medicine platforms and clinical decision support tools in rheumatology. Evaluation of outcomes demonstrates the clinical benefits and impact of these approaches in revolutionizing patient care. However, challenges such as data quality, privacy, and clinician trust must be navigated for successful implementation. The future of precision medicine lies in the continued research, development, and clinical integration of AI-driven strategies to unlock personalized patient care and drive innovation in rheumatology.
Collapse
Affiliation(s)
- Yi-Ming Chen
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taipei, 112304, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Chung Hsing University, Taichung, 402202, Taiwan
- Precision Medicine Research Center, College of Medicine, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan
- Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402202, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 40705, Taiwan.
- Department of Public Health, College of Medicine, Fu Jen Catholic University, New Taipei City, 242062, Taiwan.
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung, 407224, Taiwan.
- Institute of Public Health and Community Medicine Research Center, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan.
| | - Yang C Fann
- Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Zheng Y, Shang X. FindCSV: a long-read based method for detecting complex structural variations. BMC Bioinformatics 2024; 25:315. [PMID: 39342151 PMCID: PMC11439270 DOI: 10.1186/s12859-024-05937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Structural variations play a significant role in genetic diseases and evolutionary mechanisms. Extensive research has been conducted over the past decade to detect simple structural variations, leading to the development of well-established detection methods. However, recent studies have highlighted the potentially greater impact of complex structural variations on individuals compared to simple structural variations. Despite this, the field still lacks precise detection methods specifically designed for complex structural variations. Therefore, the development of a highly efficient and accurate detection method is of utmost importance. RESULT In response to this need, we propose a novel method called FindCSV, which leverages deep learning techniques and consensus sequences to enhance the detection of SVs using long-read sequencing data. Compared to current methods, FindCSV performs better in detecting complex and simple structural variations. CONCLUSIONS FindCSV is a new method to detect complex and simple structural variations with reasonable accuracy in real and simulated data. The source code for the program is available at https://github.com/nwpuzhengyan/FindCSV .
Collapse
Affiliation(s)
- Yan Zheng
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.
| | - Xuequn Shang
- School of Computer Science, Northwestern Polytechnical University, West Youyi Road 127, Xi'an, 710072, China.
| |
Collapse
|
3
|
Xia Z, Xiang W, Wang Q, Li X, Li Y, Gao J, Tang T, Yang C, Cui Y. CSV-Filter: a deep learning-based comprehensive structural variant filtering method for both short and long reads. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae539. [PMID: 39240375 PMCID: PMC11419953 DOI: 10.1093/bioinformatics/btae539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/29/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
MOTIVATION Structural variants (SVs) play an important role in genetic research and precision medicine. As existing SV detection methods usually contain a substantial number of false positive calls, approaches to filter the detection results are needed. RESULTS We developed a novel deep learning-based SV filtering tool, CSV-Filter, for both short and long reads. CSV-Filter uses a novel multi-level grayscale image encoding method based on CIGAR strings of the alignment results and employs image augmentation techniques to improve SV feature extraction. CSV-Filter also utilizes self-supervised learning networks for transfer as classification models, and employs mixed-precision operations to accelerate training. The experiments showed that the integration of CSV-Filter with popular SV detection tools could considerably reduce false positive SVs for short and long reads, while maintaining true positive SVs almost unchanged. Compared with DeepSVFilter, a SV filtering tool for short reads, CSV-Filter could recognize more false positive calls and support long reads as an additional feature. AVAILABILITY AND IMPLEMENTATION https://github.com/xzyschumacher/CSV-Filter.
Collapse
Affiliation(s)
- Zeyu Xia
- College of Computer Science and Technology, National University of Defense Technology, Hunan 410073, P. R. China
| | - Weiming Xiang
- College of Computer Science and Electronic Engineering, Hunan University, Hunan 410082, P. R. China
| | - Qingzhe Wang
- College of Computer Science and Technology, National University of Defense Technology, Hunan 410073, P. R. China
| | - Xingze Li
- College of Computer Science and Technology, National University of Defense Technology, Hunan 410073, P. R. China
| | - Yilin Li
- College of Computer Science and Technology, National University of Defense Technology, Hunan 410073, P. R. China
| | - Junyu Gao
- College of Computer Science and Technology, National University of Defense Technology, Hunan 410073, P. R. China
| | - Tao Tang
- College of Computer Science and Technology, National University of Defense Technology, Hunan 410073, P. R. China
| | - Canqun Yang
- College of Computer Science and Technology, National University of Defense Technology, Hunan 410073, P. R. China
- National Supercomputer Center in Tianjin, Tianjin, 300457, P. R. China
- Haihe Lab of ITAI, Tianjin, 300457, P. R. China
| | - Yingbo Cui
- College of Computer Science and Technology, National University of Defense Technology, Hunan 410073, P. R. China
| |
Collapse
|
4
|
Yu Y, Gao R, Luo J. LcDel: deletion variation detection based on clustering and long reads. Front Genet 2024; 15:1404415. [PMID: 38798694 PMCID: PMC11116628 DOI: 10.3389/fgene.2024.1404415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/25/2024] [Indexed: 05/29/2024] Open
Abstract
Motivation: Genomic structural variation refers to chromosomal level variations such as genome rearrangement or insertion/deletion, which typically involve larger DNA fragments compared to single nucleotide variations. Deletion is a common type of structural variants in the genome, which may lead to mangy diseases, so the detection of deletions can help to gain insights into the pathogenesis of diseases and provide accurate information for disease diagnosis, treatment, and prevention. Many tools exist for deletion variant detection, but they are still inadequate in some aspects, and most of them ignore the presence of chimeric variants in clustering, resulting in less precise clustering results. Results: In this paper, we present LcDel, which can detect deletion variation based on clustering and long reads. LcDel first finds the candidate deletion sites and then performs the first clustering step using two clustering methods (sliding window-based and coverage-based, respectively) based on the length of the deletion. After that, LcDel immediately uses the second clustering by hierarchical clustering to determine the location and length of the deletion. LcDel is benchmarked against some other structural variation detection tools on multiple datasets, and the results show that LcDel has better detection performance for deletion. The source code is available in https://github.com/cyq1314woaini/LcDel.
Collapse
Affiliation(s)
| | | | - Junwei Luo
- School of Software, Henan Polytechnic University, Jiaozuo, China
| |
Collapse
|
5
|
Helal AA, Saad BT, Saad MT, Mosaad GS, Aboshanab KM. Benchmarking long-read aligners and SV callers for structural variation detection in Oxford nanopore sequencing data. Sci Rep 2024; 14:6160. [PMID: 38486064 PMCID: PMC10940726 DOI: 10.1038/s41598-024-56604-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Structural variants (SVs) are one of the significant types of DNA mutations and are typically defined as larger-than-50-bp genomic alterations that include insertions, deletions, duplications, inversions, and translocations. These modifications can profoundly impact the phenotypic characteristics and contribute to disorders like cancer, response to treatment, and infections. Four long-read aligners and five SV callers have been evaluated using three Oxford Nanopore NGS human genome datasets in terms of precision, recall, and F1-score statistical metrics, depth of coverage, and speed of analysis. The best SV caller regarding recall, precision, and F1-score when matched with different aligners at different coverage levels tend to vary depending on the dataset and the specific SV types being analyzed. However, based on our findings, Sniffles and CuteSV tend to perform well across different aligners and coverage levels, followed by SVIM, PBSV, and SVDSS in the last place. The CuteSV caller has the highest average F1-score (82.51%) and recall (78.50%), and Sniffles has the highest average precision value (94.33%). Minimap2 as an aligner and Sniffles as an SV caller act as a strong base for the pipeline of SV calling because of their high speed and reasonable accomplishment. PBSV has a lower average F1-score, precision, and recall and may generate more false positives and overlook some actual SVs. Our results are valuable in the comprehensive evaluation of popular SV callers and aligners as they provide insight into the performance of several long-read aligners and SV callers and serve as a reference for researchers in selecting the most suitable tools for SV detection.
Collapse
Affiliation(s)
- Asmaa A Helal
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Bishoy T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt.
| | - Mina T Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Gamal S Mosaad
- Department of Bioinformatics, HITS Solutions Co., Cairo, 11765, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity St., Abassi, Cairo, 11566, Egypt.
| |
Collapse
|
6
|
Wei ZG, Bu PY, Zhang XD, Liu F, Qian Y, Wu FX. invMap: a sensitive mapping tool for long noisy reads with inversion structural variants. Bioinformatics 2023; 39:btad726. [PMID: 38058196 PMCID: PMC11320709 DOI: 10.1093/bioinformatics/btad726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023] Open
Abstract
MOTIVATION Longer reads produced by PacBio or Oxford Nanopore sequencers could more frequently span the breakpoints of structural variations (SVs) than shorter reads. Therefore, existing long-read mapping methods often generate wrong alignments and variant calls. Compared to deletions and insertions, inversion events are more difficult to be detected since the anchors in inversion regions are nonlinear to those in SV-free regions. To address this issue, this study presents a novel long-read mapping algorithm (named as invMap). RESULTS For each long noisy read, invMap first locates the aligned region with a specifically designed scoring method for chaining, then checks the remaining anchors in the aligned region to discover potential inversions. We benchmark invMap on simulated datasets across different genomes and sequencing coverages, experimental results demonstrate that invMap is more accurate to locate aligned regions and call SVs for inversions than the competing methods. The real human genome sequencing dataset of NA12878 illustrates that invMap can effectively find more candidate variant calls for inversions than the competing methods. AVAILABILITY AND IMPLEMENTATION The invMap software is available at https://github.com/zhang134/invMap.git.
Collapse
Affiliation(s)
- Ze-Gang Wei
- School of Physics and Optoelectronics Technology, Baoji University of Arts
and Sciences, Baoji 721016, China
- Division of Biomedical Engineering, Department of Computer Science and
Department of Mechanical Engineering, University of Saskatchewan,
Saskatoon, SK S7N 5A9, Canada
| | - Peng-Yu Bu
- School of Physics and Optoelectronics Technology, Baoji University of Arts
and Sciences, Baoji 721016, China
| | - Xiao-Dan Zhang
- School of Physics and Optoelectronics Technology, Baoji University of Arts
and Sciences, Baoji 721016, China
| | - Fei Liu
- School of Physics and Optoelectronics Technology, Baoji University of Arts
and Sciences, Baoji 721016, China
| | - Yu Qian
- School of Physics and Optoelectronics Technology, Baoji University of Arts
and Sciences, Baoji 721016, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering, Department of Computer Science and
Department of Mechanical Engineering, University of Saskatchewan,
Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|